Modeling Electrolysis-based H2 Production for Grid Service Assessment
Conference
·
OSTI ID:1572392
- Idaho National Laboratory
- National Renewable Energy Laboratory
Hydrogen is a promising clean and renewable source of energy. Its high energy density offers a unique and effective means to store energy. The integration of hydrogen production devices with the power grid could lead to a cleaner and more reliable grid operation at reasonable costs. In this work, the capability of Proton Exchange Membrane (PEM) electrolyzers to perform grid services is assessed using a battery equivalent model approach. The Battery Equivalent Model (BEM) has been developed to represent the physics and operation of a fleet of PEM electrolyzers. The BEM model has been designed to be modular and readily incorporated into grid planning studies. This application of PEM electrolyzers can be integrated with other power generation and consumption devices, aggregating capabilities of each device to enhance the ability of the integrated system to provide grid services and improves grid stability. The developed model is evaluated using ancillary support services including peak management, frequency regulation, voltage regulation, artificial inertia, spinning reserve, and wholesale market price response using a representative price and power system profiles. The BEM model has also been evaluated to provide frequency regulation service that conforms to the IEEE 1547-2018 standard. Metrics such as energy efficiency, charging efficiency, hydrogen production rate, and service efficacy have been incorporated into the model to quantify the performance of the fleet while responding to grid services. Results show the electrolyzer fleet's effectiveness in quickly adjusting its real power consumption based on grid service requests. The energy efficiency of the fleet is maintained relatively high – in the range of 78% and 90% during the service operation. These results demonstrate the ability of PEM electrolyzers to effectively provide fast dispatch capability through storing off-peak hour energy while regulating power consumption during peak hours. The BEM model can assist in quantifying the stability and variability impacts from integration of PEM electrolyzers with intermittent renewable resources in grid integration studies.
- Research Organization:
- Idaho National Laboratory (INL), Idaho Falls, ID (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- DOE Contract Number:
- AC07-05ID14517
- OSTI ID:
- 1572392
- Report Number(s):
- INL/CON-19-56096-Rev000
- Country of Publication:
- United States
- Language:
- English
Similar Records
Power Converter Topologies for Electrolyzer Applications to Enable Electric Grid Services
Development of a Hydrogen Energy System as a Grid Frequency Management Tool
Stabilizing the Grid and Reducing Utility Bills Through Price-Responsive Controls for Heat Pump Water Heaters
Conference
·
Fri Nov 12 23:00:00 EST 2021
·
OSTI ID:1835262
Development of a Hydrogen Energy System as a Grid Frequency Management Tool
Technical Report
·
Fri Jul 15 00:00:00 EDT 2016
·
OSTI ID:1262641
Stabilizing the Grid and Reducing Utility Bills Through Price-Responsive Controls for Heat Pump Water Heaters
Technical Report
·
Sat Jun 24 00:00:00 EDT 2023
·
OSTI ID:2352227