Observation of moiré excitons in WSe2/WS2 heterostructure superlattices
- Univ. of California, Berkeley, CA (United States). Dept. of Physics
- Univ. of California, Berkeley, CA (United States). Dept. of Physics; Univ. of California, Berkeley, CA (United States). Graduate Group in Applied Science and Technology
- Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
- Univ. of California, Berkeley, CA (United States). Dept. of Physics; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
- Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy
- Univ. of California, Berkeley, CA (United States). Dept. of Physics; Fudan Univ., Shanghai (China). Dept. of Physics
- National Inst. for Materials Science, Tsukuba (Japan)
- Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kavli Energy NanoSciences Inst. at Univ. of California Berkeley and Lawrence Berkeley National Lab., Berkeley, CA (United States)
Moiré superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moiré superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moiré superlattices. In addition to their pronounced effects on single-particle states, moiré superlattices have recently been predicted to host excited states such as moiré exciton bands. Here we report the observation of moiré superlattice exciton states in tungsten diselenide/tungsten disulfide (WSe2/WS2) heterostructures in which the layers are closely aligned. These moiré exciton states manifest as multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A exciton in WSe2 monolayers and in WSe2/WS2 heterostructures with large twist angles. These phenomena can be described by a theoretical model in which the periodic moiré potential is much stronger than the exciton kinetic energy and generates multiple flat exciton minibands. The moiré exciton bands provide an attractive platform from which to explore and control excited states of matter, such as topological excitons and a correlated exciton Hubbard model, in transition-metal dichalcogenides.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; USDOD
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1571978
- Journal Information:
- Nature (London), Journal Name: Nature (London) Journal Issue: 7746 Vol. 567; ISSN 0028-0836
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Correlated insulator of excitons in WSe 2 /WS 2 moiré superlattices