skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlocal Transport and Implied Viscosity and Diffusivity throughout the Boundary Layer in LES of the Southern Ocean with Surface Waves

Journal Article · · Journal of Physical Oceanography
 [1];  [1];  [1]
  1. National Center for Atmospheric Research, Boulder, Colorado

Abstract Observations from the Southern Ocean Flux Station provide a wide range of wind, buoyancy, and wave (Stokes) forcing for large-eddy simulation (LES) of deep Southern Ocean boundary layers. Almost everywhere there is a nonzero angle Ω between the shear and the stress vectors. Also, with unstable forcing there is usually a depth where there is stable stratification, but zero buoyancy flux and often a number of depths above where there is positive flux, but neutral stratification. These features allow nonlocal transports of buoyancy and of momentum to be diagnosed, using either the Eulerian or Lagrangian shear. The resulting profiles of nonlocal diffusivity and viscosity are quite similar when scaled according to Monin–Obukhov similarity theory in the surface layer, provided the Eulerian shear is used. Therefore, a composite shape function is constructed that may be generally applicable. In contrast, the deeper boundary layer appears to be too decoupled from the Stokes component of the Lagrangian shear. The nonlocal transports can be dominant. The diagnosed across-shear momentum flux is entirely nonlocal and is highly negatively correlated with the across-shear component of the wind stress, just as nonlocal and surface buoyancy fluxes are related. Furthermore, in the convective limit the scaling coefficients become essentially identical, with some consistency with atmospheric experience. The nonlocal contribution to the along-shear momentum flux is proportional to (1 − cosΩ) and is always countergradient, but is unrelated to the aligned wind stress component.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Organization:
USDOE Office of Science (SC)
Grant/Contract Number:
SC-00126005; AC02-05CH11231
OSTI ID:
1569093
Alternate ID(s):
OSTI ID: 1577833
Journal Information:
Journal of Physical Oceanography, Journal Name: Journal of Physical Oceanography Vol. 49 Journal Issue: 10; ISSN 0022-3670
Publisher:
American Meteorological SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Similar Records

Similarity Theory in the Surface Layer of Large-Eddy Simulations of the Wind-, Wave-, and Buoyancy-Forced Southern Ocean
Journal Article · Thu Aug 01 00:00:00 EDT 2019 · Journal of Physical Oceanography · OSTI ID:1569093

Southern Ocean Uptake in the MPAS-Ocean Model
Technical Report · Thu Nov 01 00:00:00 EDT 2018 · OSTI ID:1569093

The diurnal cycle of entrainment and detrainment in LES of the Southern Ocean driven by observed surface fluxes and waves
Journal Article · Fri Oct 01 00:00:00 EDT 2021 · Journal of Physical Oceanography · OSTI ID:1569093