skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Asynchronous In Situ Connected-Components Analysis for Complex Fluid flows, In: ISAV '16 Proceedings of the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization

Conference · · PROCEEDINGS OF ISAV 2016: 2ND WORKSHOP ON IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION
DOI:https://doi.org/10.1109/ISAV.2016.8· OSTI ID:1567430

The simulation of multiscale physics is an important challenge for scientific computing. For this class of problem, large three-dimensional simulations are performed to advance scientific inquiry. On massively parallel computing systems, the volume of data generated by such approaches can become a productivity bottleneck if the raw data generated from the simulation is analyzed in a post-processing step. To address this, we present a physics-based framework for in situ data reduction that is theoretically grounded in multiscale averaging theory. We show how task parallelism can be exploited to concurrently perform a variety of analysis tasks with data-dependent costs, including the generation of iso-surfaces, morphological analyses, and connected components analysis. All analyses are performed in parallel using distributed memory and use the same domain decomposition as the simulation. A task management framework is constructed to leverage available parallelism within a node for analysis. The capabilities of the framework are to launch asynchronous analysis threads, manage dependencies between different tasks, promote data locality and minimize the impact of data transfers. The framework is applied to analyze GPU-based simulations of two-fluid-phase flow in porous media, generating a set of averaged measures that represents the overall system behavior. We demonstrate how the approach can be applied to perform physically-consistent analysis over fluid sub-regions determined from connected components analysis. Simulations performed on Oak Ridge National Lab's Titan supercomputer are profiled to demonstrate the performance of the associated multi-threaded in situ analysis approach for typical production simulation of two-fluid-phase flow.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); UT-Battelle LLC/ORNL, Oak Ridge, TN (United States); Univ. of North Carolina, Chapel Hill, NC (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-00OR22725; SC0002163
OSTI ID:
1567430
Journal Information:
PROCEEDINGS OF ISAV 2016: 2ND WORKSHOP ON IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION, Conference: Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization, Salt Lake City, Utah, November 13-18, 2016
Country of Publication:
United States
Language:
English