skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organic Linker Effect on the Growth and Diffusion of Cu Clusters in a Metal–Organic Framework

Journal Article · · Journal of Physical Chemistry. C

One reason that metal nanoparticles encapsulated in metal-organic frameworks are of interest is that confinement effects on the particle size and shape may lead to superior catalytic activity. The interior of a metal–organic framework has the possibility to influence nucleation and aggregation of metal nanoparticles and to strongly affect their in situ shape and electronic properties. We apply density functional theory and ab initio molecular dynamics (AIMD) to model the nucleation and diffusion of Cun (n = 1–19) clusters on the tetratopic 1,3,6,8-(p-benzoate)pyrene (TBAPy4–) linkers of NU-1000 frameworks. We find that Cu atoms and Cu clusters are stabilized by the TBAPy linker, especially by the edge site of aromatic rings. The stabilization increases when the Cu cluster interacts with two linkers. We confirmed the most favorable site for Cu cluster adsorption as the window site that connects the c pore and the triangular pore. A Pt atom is found to bind much more strongly than a Cu atom on the TBAPy linker, and AIMD simulations show that this promotes Pt atom diffusion from the center of a Cu15 cluster to the interface between the linker and the cluster. The strong interaction between a Pt atom and a linker is attributed to the greater metal-to-linker charge transfer.

Research Organization:
Univ. of Texas, Austin, TX (United States). Energy Frontier Research Center (EFRC); Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Grant/Contract Number:
SC0012702
OSTI ID:
1566523
Journal Information:
Journal of Physical Chemistry. C, Vol. 122, Issue 47; ISSN 1932-7447
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science