skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite

Abstract

The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes preclude higher energy densities. Partial or exclusive anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li +. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C 3.5[Br 0.5Cl 0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. Here, this anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [1];  [5];  [4];  [1];  [3];  [2];  [4];  [2];  [1]
  1. Univ. of Maryland, College Park, MD (United States)
  2. U.S. Army Research Lab., Adelphi, MD (United States)
  3. Center for High Pressure Science and Technology Advanced Research, Shanghai (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); City Univ. of Hong Kong, Hong Kong (China)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1559969
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Volume: 569; Journal Issue: 7755; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Yang, Chongyin, Chen, Ji, Ji, Xiao, Pollard, Travis P., Lü, Xujie, Sun, Cheng -Jun, Hou, Singyuk, Liu, Qi, Liu, Cunming, Qing, Tingting, Wang, Yingqi, Borodin, Oleg, Ren, Yang, Xu, Kang, and Wang, Chunsheng. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1175-6.
Yang, Chongyin, Chen, Ji, Ji, Xiao, Pollard, Travis P., Lü, Xujie, Sun, Cheng -Jun, Hou, Singyuk, Liu, Qi, Liu, Cunming, Qing, Tingting, Wang, Yingqi, Borodin, Oleg, Ren, Yang, Xu, Kang, & Wang, Chunsheng. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. United States. doi:10.1038/s41586-019-1175-6.
Yang, Chongyin, Chen, Ji, Ji, Xiao, Pollard, Travis P., Lü, Xujie, Sun, Cheng -Jun, Hou, Singyuk, Liu, Qi, Liu, Cunming, Qing, Tingting, Wang, Yingqi, Borodin, Oleg, Ren, Yang, Xu, Kang, and Wang, Chunsheng. Wed . "Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite". United States. doi:10.1038/s41586-019-1175-6.
@article{osti_1559969,
title = {Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite},
author = {Yang, Chongyin and Chen, Ji and Ji, Xiao and Pollard, Travis P. and Lü, Xujie and Sun, Cheng -Jun and Hou, Singyuk and Liu, Qi and Liu, Cunming and Qing, Tingting and Wang, Yingqi and Borodin, Oleg and Ren, Yang and Xu, Kang and Wang, Chunsheng},
abstractNote = {The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes preclude higher energy densities. Partial or exclusive anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li+. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C3.5[Br0.5Cl0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. Here, this anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.},
doi = {10.1038/s41586-019-1175-6},
journal = {Nature (London)},
issn = {0028-0836},
number = 7755,
volume = 569,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 8, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Development of a Polarizable Force Field for Molecular Dynamics Simulations of Poly (Ethylene Oxide) in Aqueous Solution
journal, April 2011

  • Starovoytov, Oleg N.; Borodin, Oleg; Bedrov, Dmitry
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 6
  • DOI: 10.1021/ct200064u

Chlorine in coal: an XAFS spectroscopic investigation
journal, April 1995


Projector augmented-wave method
journal, December 1994


Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


4.0 V Aqueous Li-Ion Batteries
journal, September 2017


Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide
journal, November 2017

  • Cao, Jianyun; He, Pei; Mohammed, Mahdi A.
  • Journal of the American Chemical Society, Vol. 139, Issue 48
  • DOI: 10.1021/jacs.7b08515

Ionic salt limit in graphite–fluoroarsenate intercalation compounds
journal, May 1983

  • Milliken, J. W.; Fischer, J. E.
  • The Journal of Chemical Physics, Vol. 78, Issue 9
  • DOI: 10.1063/1.445423

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

EXAFS study of Br2-graphite intercalation compounds
journal, April 1980


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite
journal, August 2009


Two-dimensional structure of bromine intercalated graphite
journal, October 1983


A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Raman scattering as a probe of structural phase transitions in the intercalated graphite-bromine system
journal, April 1982


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Structure and phase transitions of graphite intercalated with bromine
journal, December 1986


Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
journal, October 1982

  • Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.
  • The Journal of Chemical Physics, Vol. 77, Issue 7, p. 3654-3665
  • DOI: 10.1063/1.444267

Intercalation compounds of graphite
journal, April 1981


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
journal, September 2007

  • VandeVondele, Joost; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2770708

Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility
journal, May 2017

  • Yang, Chongyin; Suo, Liumin; Borodin, Oleg
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 24
  • DOI: 10.1073/pnas.1703937114

Conversion cathodes for rechargeable lithium and lithium-ion batteries
journal, January 2017

  • Wu, Feixiang; Yushin, Gleb
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE02326F

The Raman Frequency of Bromine Monochloride
journal, May 1953

  • Stammreich, H.; Forneris, Roberto
  • The Journal of Chemical Physics, Vol. 21, Issue 5
  • DOI: 10.1063/1.1699076

Kinetics and thermodynamics of intercalation of bromine in graphite—I. Experimental
journal, January 1987


Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes
journal, October 2017


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Electrochemical Intercalation of  PF 6 into Graphite
journal, January 2000

  • Seel, J. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 3, p. 892-898
  • DOI: 10.1149/1.1393288

Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte
journal, April 2016

  • Suo, Liumin; Borodin, Oleg; Sun, Wei
  • Angewandte Chemie International Edition, Vol. 55, Issue 25
  • DOI: 10.1002/anie.201602397

Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Structural studies of graphite intercalation compounds using ( 0 0 l ) x-ray diffraction
journal, September 1981


EXAFS analysis using FEFF and FEFFIT
journal, March 2001


Extended-x-ray-absorption-fine-structure study of the Br 2 -graphite system
journal, May 1978


Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids
journal, August 2009

  • Borodin, Oleg
  • The Journal of Physical Chemistry B, Vol. 113, Issue 33
  • DOI: 10.1021/jp905220k

The Raman Spectra of Some Halogen Gas Hydrates.
journal, January 1975


Crystal structure of graphite bromine lamellar compounds
journal, August 1971


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Molecular dynamics simulation of a polymer chain in solution
journal, November 1993

  • Dünweg, Burkhard; Kremer, Kurt
  • The Journal of Chemical Physics, Vol. 99, Issue 9
  • DOI: 10.1063/1.465445

Thermodynamic and Mass Transport Properties of “LiAl”
journal, January 1979

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128939

Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017