skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The potential for avoiding hydrogen release from cryogenic pressure vessels after vacuum insulation failure

Journal Article · · International Journal of Hydrogen Energy

This paper presents an analysis of vacuum insulation failure in an automotive cryogenic pressure vessel (also known as cryo-compressed vessel) storing hydrogen. Vacuum insulation failure increases heat transfer into cryogenic vessels by about a factor of 100, potentially leading to rapid pressurization and venting of the cryogen to avoid exceeding maximum allowable working pressure (MAWP). Hydrogen release to the environment may be dangerous, especially if the vehicle is located in a closed space (e.g. a garage or tunnel) at the moment of insulation failure. We therefore consider utilization of the hydrogen in the vehicle fuel cell and dissipation of the electricity by operating vehicle accessories or electric resistances as an alternative to releasing hydrogen to the environment. We consider two strategies: initiating hydrogen extraction immediately after vacuum insulation failure or waiting until maximum operating pressure is reached before extraction. The results indicate that cryogenic pressure vessels have thermodynamic advantages that enable slowing down hydrogen release to moderate levels that can be consumed in the fuel cell and dissipated in vehicle accessories supplemented by electric resistances, even in the worst case when the insulation fails at the moment when the vessel stores hydrogen near its maximum density (70 g/L at 300 bar). As a result, the two proposed strategies are therefore feasible, and the best alternative can be chosen based on economic and/or implementation constraints.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC52-07NA27344
OSTI ID:
1557941
Report Number(s):
LLNL-JRNL-745596; 930141
Journal Information:
International Journal of Hydrogen Energy, Vol. 43, Issue 16; ISSN 0360-3199
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science