skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment

Journal Article · · IEEE Transactions on Control Systems Technology

This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, offline dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include: a nonlinear time-based formulation that directly penalizes predicted fuel consumption, a nonlinear time-based formulation that penalizes braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck's longitudinal and engine dynamics, we analyze the optimization's performance on four highway routes under various traffic scenarios. Results demonstrate 3.7-8.3% fuel economy improvement on highway routes without traffic and 6.5-10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by "type" (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy.

Research Organization:
Univ. of North Carolina, Charlotte, NC (United States)
Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Grant/Contract Number:
AR0000801
OSTI ID:
1557265
Journal Information:
IEEE Transactions on Control Systems Technology, Vol. 28, Issue 5; ISSN 1063-6536
Publisher:
IEEECopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Similar Records

A Comparative Assessment of Economic Model Predictive Control Strategies for Fuel Economy Optimization of Heavy-Duty Trucks
Journal Article · Fri Jun 01 00:00:00 EDT 2018 · Proceedings of the American Control Conference (ACC) · OSTI ID:1557265

Fused Global-Local Economic Model Predictive Control for Real-Time Eco-Optimal Control of a Heavy Duty Truck
Conference · Fri Aug 16 00:00:00 EDT 2019 · OSTI ID:1557265

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System
Journal Article · Tue Apr 02 00:00:00 EDT 2019 · Society of Automotive Engineers Technical Paper Series · OSTI ID:1557265