skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions

Abstract

Solving the lithium (Li) metal problem is one of the most significant challenges for future high energy batteries. Despite significant efforts to stabilize Li-metal anode structures and prevent dendrite formation, achieving long cycling life in high energy cells remains extremely difficult due to a combination of complex failure modes involving accelerated anode degradation, and depletion of the electrolyte and the Li metal. Here, we report a stable and self-smoothing Li anode structure based on amine-functionalized three-dimensional (3D) carbon fibers for long-cycling life full cells under conditions required for high energy, rechargeable Li-metal batteries. Reversible and smooth Li deposition and stripping is realized on the new anode structure, in contrast with the porous and dendritic Li layers that develop on a pure Li-metal surface. The stable, self-smoothing anode coupled with high-capacity LiNi0.8Mn0.1Co0.1O2 delivers stable cycling using parameters for a high energy cell with a specific energy of more than 380 Wh kg-1, counting all active and inactive components in a single cell, in particular with a high cathode loading, thin Li metal and lean electrolyte. The cycling life of the cell is increased by more than an order of magnitude compared to the cell using a flat Li-metal anode.


Citation Formats

Niu, Chaojiang, Pan, Huilin, Xu, Wu, Xiao, Jie, Zhang, Jiguang, Luo, Langli, Wang, Chongmin, Mei, Donghai, Meng, Jiashen, Wang, Xuanpeng, Liu, Ziang, Mai, Liqiang, and Liu, Jun. Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions. United States: N. p., 2019. Web. doi:10.1038/s41565-019-0427-9.
Niu, Chaojiang, Pan, Huilin, Xu, Wu, Xiao, Jie, Zhang, Jiguang, Luo, Langli, Wang, Chongmin, Mei, Donghai, Meng, Jiashen, Wang, Xuanpeng, Liu, Ziang, Mai, Liqiang, & Liu, Jun. Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions. United States. doi:10.1038/s41565-019-0427-9.
Niu, Chaojiang, Pan, Huilin, Xu, Wu, Xiao, Jie, Zhang, Jiguang, Luo, Langli, Wang, Chongmin, Mei, Donghai, Meng, Jiashen, Wang, Xuanpeng, Liu, Ziang, Mai, Liqiang, and Liu, Jun. Mon . "Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions". United States. doi:10.1038/s41565-019-0427-9.
@article{osti_1544607,
title = {Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions},
author = {Niu, Chaojiang and Pan, Huilin and Xu, Wu and Xiao, Jie and Zhang, Jiguang and Luo, Langli and Wang, Chongmin and Mei, Donghai and Meng, Jiashen and Wang, Xuanpeng and Liu, Ziang and Mai, Liqiang and Liu, Jun},
abstractNote = {Solving the lithium (Li) metal problem is one of the most significant challenges for future high energy batteries. Despite significant efforts to stabilize Li-metal anode structures and prevent dendrite formation, achieving long cycling life in high energy cells remains extremely difficult due to a combination of complex failure modes involving accelerated anode degradation, and depletion of the electrolyte and the Li metal. Here, we report a stable and self-smoothing Li anode structure based on amine-functionalized three-dimensional (3D) carbon fibers for long-cycling life full cells under conditions required for high energy, rechargeable Li-metal batteries. Reversible and smooth Li deposition and stripping is realized on the new anode structure, in contrast with the porous and dendritic Li layers that develop on a pure Li-metal surface. The stable, self-smoothing anode coupled with high-capacity LiNi0.8Mn0.1Co0.1O2 delivers stable cycling using parameters for a high energy cell with a specific energy of more than 380 Wh kg-1, counting all active and inactive components in a single cell, in particular with a high cathode loading, thin Li metal and lean electrolyte. The cycling life of the cell is increased by more than an order of magnitude compared to the cell using a flat Li-metal anode.},
doi = {10.1038/s41565-019-0427-9},
journal = {Nature Nanotechnology},
number = 6,
volume = 14,
place = {United States},
year = {2019},
month = {6}
}

Works referenced in this record:

Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

A stable lithium metal interface
journal, July 2014


Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Protecting the Li-Metal Anode in a Li-O 2 Battery by using Boric Acid as an SEI-Forming Additive
journal, August 2018


High-power lithium batteries from functionalized carbon-nanotube electrodes
journal, June 2010

  • Lee, Seung Woo; Yabuuchi, Naoaki; Gallant, Betar M.
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.116

Self-heating–induced healing of lithium dendrites
journal, March 2018


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Using all energy in a battery
journal, January 2015


Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage
journal, May 2014


Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons
journal, April 2017

  • Ye, Huan; Xin, Sen; Yin, Ya-Xia
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01763

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
journal, April 2018


Advanced Porous Carbon Materials for High-Efficient Lithium Metal Anodes
journal, July 2017


Ultrafast Charging High Capacity Asphalt–Lithium Metal Batteries
journal, September 2017

  • Wang, Tuo; Villegas Salvatierra, Rodrigo; Jalilov, Almaz S.
  • ACS Nano, Vol. 11, Issue 11
  • DOI: 10.1021/acsnano.7b05874

Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode
journal, March 2019


Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
journal, March 2011

  • Zhang, Huigang; Yu, Xindi; Braun, Paul V.
  • Nature Nanotechnology, Vol. 6, Issue 5, p. 277-281
  • DOI: 10.1038/nnano.2011.38

A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries
journal, August 2017


High-capacity, low-tortuosity, and channel-guided lithium metal anode
journal, March 2017

  • Zhang, Ying; Luo, Wei; Wang, Chengwei
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 14
  • DOI: 10.1073/pnas.1618871114

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Lithium Batteries with Nearly Maximum Metal Storage
journal, May 2017

  • Raji, Abdul-Rahman O.; Villegas Salvatierra, Rodrigo; Kim, Nam Dong
  • ACS Nano, Vol. 11, Issue 6
  • DOI: 10.1021/acsnano.7b02731

Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
journal, September 2018


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Lithium metal stripping/plating mechanisms studies: A metallurgical approach
journal, October 2006


Effect of Current Density on Morphology of Lithium Electrodeposited in Ionic Liquid-Based Electrolytes
journal, January 2014

  • Sano, Hikaru; Sakaebe, Hikari; Senoh, Hiroshi
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0331409jes

Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


Making Li-metal electrodes rechargeable by controlling the dendrite growth direction
journal, June 2017


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

The interplay between solid electrolyte interface (SEI) and dendritic lithium growth
journal, October 2017


Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis
journal, June 2015

  • Niu, Chaojiang; Meng, Jiashen; Wang, Xuanpeng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8402

Superhydrophilic (superwetting) surfaces: A review on fabrication and application
journal, March 2017

  • Otitoju, T. A.; Ahmad, A. L.; Ooi, B. S.
  • Journal of Industrial and Engineering Chemistry, Vol. 47
  • DOI: 10.1016/j.jiec.2016.12.016

Hydrophilic and superhydrophilic surfaces and materials
journal, January 2011

  • Drelich, Jaroslaw; Chibowski, Emil; Meng, Dennis Desheng
  • Soft Matter, Vol. 7, Issue 21
  • DOI: 10.1039/c1sm05849e

Effects of Polymer Coatings on Electrodeposited Lithium Metal
journal, August 2018

  • Lopez, Jeffrey; Pei, Allen; Oh, Jin Young
  • Journal of the American Chemical Society, Vol. 140, Issue 37
  • DOI: 10.1021/jacs.8b06047

High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework
journal, November 2014

  • Zheng, Fangcai; Yang, Yang; Chen, Qianwang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6261

Mechanism of Novel Reaction from LiNH 2 and LiH to Li 2 NH and H 2 as a Promising Hydrogen Storage System
journal, June 2004

  • Ichikawa, Takayuki; Hanada, Nobuko; Isobe, Shigehito
  • The Journal of Physical Chemistry B, Vol. 108, Issue 23
  • DOI: 10.1021/jp049968y

Decomposition of LiAl(NH 2 ) 4 and Reaction with LiH for a Possible Reversible Hydrogen Storage
journal, February 2007

  • Janot, Raphaël; Eymery, Jean-Bruno; Tarascon, Jean-Marie
  • The Journal of Physical Chemistry C, Vol. 111, Issue 5
  • DOI: 10.1021/jp065801o

Mechanochemistry of lithium nitride under hydrogen gas
journal, January 2015

  • Li, Z.; Zhang, J.; Wang, S.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 34
  • DOI: 10.1039/C5CP02812D

Two-step crystal nucleation via capillary condensation
journal, January 2013


High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Cycle deterioration analysis of 0.6 Ah-class lithium-ion cells with cell chemistry of LiNi0.6Co0.2Mn0.2O2-based/graphite
journal, November 2016