skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations

Abstract

The structural properties, energetics, and polarizations of perovskite-based thin-film oxide systems are computed as a function of biaxial strain state and epitaxial orientation, employing an automated computational workflow based on density functional theory. A total of 14 compositions are considered, of the form ABO3, with A = Ba, K, Na, Pb, and Sr and B = Hf, Sn, Ti, Zr, Nb, Ta, and V site cations chosen to yield tolerance factors with values ranging between 0.95 and 1.1. Three biaxial strain states corresponding to epitaxial growth of (100)-, (110)-, and (111)-oriented films are considered, with misfit strains ranging between −4% to 4%. Results are presented for the series of perovskite-derived phases, and their corresponding symmetries, which are energetically favorable as a function of misfit strain, along with their corresponding equilibrium atomic positions, lattice parameters, and electric polarizations. The results demonstrate robust trends of in-plane polarization enhancement under tensile strain for all epitaxial orientations, and out-of-plane polarization enhancementwith compression for the (100)- and (110)-oriented films. Strains corresponding to the (111)-growth orientation lead to a wider variety of out-of-plane polarization behavior, with BaTiO3 showing anomalous diminishing polarization with compression. Epitaxial orientation is shown to have a strong effect on the nature ofmore » strain-induced phase transitions, with (100)-oriented systems tending to have smooth, second-order transitions and (110)- and (111)-oriented systems more commonly exhibiting first-order transitions. The significance of this effect for device applications is discussed, and a number of systems are identified as potentially interesting for ferroelectric thin-film applications based on energetic stability and polarization behavior. Analysis of polarization behavior across different orientations reveals distinct groups into which compositions can be organized, some of which have polarization dependencies on misfit strain that have not been reported previously.« less

Authors:
 [1];  [1];  [1]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1544391
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 17; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English

Citation Formats

Angsten, Thomas, Martin, Lane W., and Asta, Mark. Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.174110.
Angsten, Thomas, Martin, Lane W., & Asta, Mark. Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations. United States. doi:10.1103/PhysRevB.95.174110.
Angsten, Thomas, Martin, Lane W., and Asta, Mark. Mon . "Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations". United States. doi:10.1103/PhysRevB.95.174110.
@article{osti_1544391,
title = {Orientation-dependent properties of epitaxially strained perovskite oxide thin films: Insights from first-principles calculations},
author = {Angsten, Thomas and Martin, Lane W. and Asta, Mark},
abstractNote = {The structural properties, energetics, and polarizations of perovskite-based thin-film oxide systems are computed as a function of biaxial strain state and epitaxial orientation, employing an automated computational workflow based on density functional theory. A total of 14 compositions are considered, of the form ABO3, with A = Ba, K, Na, Pb, and Sr and B = Hf, Sn, Ti, Zr, Nb, Ta, and V site cations chosen to yield tolerance factors with values ranging between 0.95 and 1.1. Three biaxial strain states corresponding to epitaxial growth of (100)-, (110)-, and (111)-oriented films are considered, with misfit strains ranging between −4% to 4%. Results are presented for the series of perovskite-derived phases, and their corresponding symmetries, which are energetically favorable as a function of misfit strain, along with their corresponding equilibrium atomic positions, lattice parameters, and electric polarizations. The results demonstrate robust trends of in-plane polarization enhancement under tensile strain for all epitaxial orientations, and out-of-plane polarization enhancementwith compression for the (100)- and (110)-oriented films. Strains corresponding to the (111)-growth orientation lead to a wider variety of out-of-plane polarization behavior, with BaTiO3 showing anomalous diminishing polarization with compression. Epitaxial orientation is shown to have a strong effect on the nature of strain-induced phase transitions, with (100)-oriented systems tending to have smooth, second-order transitions and (110)- and (111)-oriented systems more commonly exhibiting first-order transitions. The significance of this effect for device applications is discussed, and a number of systems are identified as potentially interesting for ferroelectric thin-film applications based on energetic stability and polarization behavior. Analysis of polarization behavior across different orientations reveals distinct groups into which compositions can be organized, some of which have polarization dependencies on misfit strain that have not been reported previously.},
doi = {10.1103/PhysRevB.95.174110},
journal = {Physical Review B},
issn = {2469-9950},
number = 17,
volume = 95,
place = {United States},
year = {2017},
month = {5}
}

Works referenced in this record:

Room-temperature ferroelectricity in strained SrTiO3
journal, August 2004

  • Haeni, J. H.; Irvin, P.; Chang, W.
  • Nature, Vol. 430, Issue 7001, p. 758-761
  • DOI: 10.1038/nature02773

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188