Surfactants adsorption on crossing stripes and steps
Using coarse-grained dissipative particle dynamics (DPD) simulations, we systematically study the effect of surface heterogeneity on surfactant adsorption. Here we investigate the adsorption and aggregation of surfactants on hydrophobic stripes crossing each other perpendicularly (i.e., crossing stripes) and on hydrophobic steps. The results are compared with those obtained for isolated stripes. We find that on crossing stripes of moderate stripe widths (e.g., L = 0.61LS, 1.22LS and 1.83LS, where LS is the length of one surfactant molecule) the crossing region hinders the formation of defect-free adsorbed surfactant structures. By increasing the stripe width and/or by increasing the length of one of the two perpendicularly crossing stripes (i.e., lowering the surface density of defects/intersections), the crossing region is found to have a weaker effect on the features of the adsorbed structures. Regarding surfactant adsorption on steps, our simulation results show that the self-assembled aggregates can be stretched along the step corner, and the resultant elastic deformation can hinder adsorption. This qualitative observation can facilitate a description of surfactant adsorption that takes into consideration also the deformation of the self-assembled film. As suggested by such a general model, increasing the convex angle of the step, increasing the size of the surfactant head groups, and changing other physical parameters can reduce the elastic energy penalty, and yield larger amounts of surfactants adsorbed. The results presented could assist in understanding and sometimes predicting surfactant adsorption on heterogeneous surfaces, suggest methods to formulate surfactant mixtures to control surface coverage on heterogeneous surfaces, and perhaps facilitate new methods for the fabrication of nano-structured surfaces.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 1543785
- Journal Information:
- Soft Matter, Journal Name: Soft Matter Journal Issue: 4 Vol. 13; ISSN SMOABF; ISSN 1744-683X
- Publisher:
- Royal Society of Chemistry
- Country of Publication:
- United States
- Language:
- English
Similar Records
Association and adsorption of nonionic flexible chain surfactants
Adsorbed layer structure of cationic surfactants on quartz
Journal Article
·
Sat Sep 01 00:00:00 EDT 1990
· Langmuir; (USA)
·
OSTI ID:6332359
Adsorbed layer structure of cationic surfactants on quartz
Journal Article
·
Sat Mar 31 23:00:00 EST 2001
· Physical Review E
·
OSTI ID:40205377