skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acceleration of electrons in the plasma wakefield of a proton bunch

Abstract

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse or electron bunch traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage. Long, thin proton bunches can be used because they undergo a process called self-modulation, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment atmore » CERN uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage means that our results are an important step towards the development of future high-energy particle accelerators.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE; Russian Science Foundation; German Research Foundation (DFG); National Research Foundation of Korea (NRF); Portuguese FCT—Foundation for Science and Technology
Contributing Org.:
AWAKE Collaboration
OSTI Identifier:
1543771
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Volume: 561; Journal Issue: 7723; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Adli, E., Ahuja, A., Apsimon, O., Apsimon, R., Bachmann, A. -M., Barrientos, D., Batsch, F., Bauche, J., Berglyd Olsen, V. K., Bernardini, M., Bohl, T., Bracco, C., Braunmüller, F., Burt, G., Buttenschön, B., Caldwell, A., Cascella, M., Chappell, J., Chevallay, E., Chung, M., Cooke, D., Damerau, H., Deacon, L., Deubner, L. H., Dexter, A., Doebert, S., Farmer, J., Fedosseev, V. N., Fiorito, R., Fonseca, R. A., Friebel, F., Garolfi, L., Gessner, S., Gorgisyan, I., Gorn, A. A., Granados, E., Grulke, O., Gschwendtner, E., Hansen, J., Helm, A., Henderson, J. R., Hüther, M., Ibison, M., Jensen, L., Jolly, S., Keeble, F., Kim, S. -Y., Kraus, F., Li, Y., Liu, S., Lopes, N., Lotov, K. V., Maricalva Brun, L., Martyanov, M., Mazzoni, S., Medina Godoy, D., Minakov, V. A., Mitchell, J., Molendijk, J. C., Moody, J. T., Moreira, M., Muggli, P., Öz, E., Pasquino, C., Pardons, A., Peña Asmus, F., Pepitone, K., Perera, A., Petrenko, A., Pitman, S., Pukhov, A., Rey, S., Rieger, K., Ruhl, H., Schmidt, J. S., Shalimova, I. A., Sherwood, P., Silva, L. O., Soby, L., Sosedkin, A. P., Speroni, R., Spitsyn, R. I., Tuev, P. V., Turner, M., Velotti, F., Verra, L., Verzilov, V. A., Vieira, J., Welsch, C. P., Williamson, B., Wing, M., Woolley, B., and Xia, G. Acceleration of electrons in the plasma wakefield of a proton bunch. United States: N. p., 2018. Web. doi:10.1038/s41586-018-0485-4.
Adli, E., Ahuja, A., Apsimon, O., Apsimon, R., Bachmann, A. -M., Barrientos, D., Batsch, F., Bauche, J., Berglyd Olsen, V. K., Bernardini, M., Bohl, T., Bracco, C., Braunmüller, F., Burt, G., Buttenschön, B., Caldwell, A., Cascella, M., Chappell, J., Chevallay, E., Chung, M., Cooke, D., Damerau, H., Deacon, L., Deubner, L. H., Dexter, A., Doebert, S., Farmer, J., Fedosseev, V. N., Fiorito, R., Fonseca, R. A., Friebel, F., Garolfi, L., Gessner, S., Gorgisyan, I., Gorn, A. A., Granados, E., Grulke, O., Gschwendtner, E., Hansen, J., Helm, A., Henderson, J. R., Hüther, M., Ibison, M., Jensen, L., Jolly, S., Keeble, F., Kim, S. -Y., Kraus, F., Li, Y., Liu, S., Lopes, N., Lotov, K. V., Maricalva Brun, L., Martyanov, M., Mazzoni, S., Medina Godoy, D., Minakov, V. A., Mitchell, J., Molendijk, J. C., Moody, J. T., Moreira, M., Muggli, P., Öz, E., Pasquino, C., Pardons, A., Peña Asmus, F., Pepitone, K., Perera, A., Petrenko, A., Pitman, S., Pukhov, A., Rey, S., Rieger, K., Ruhl, H., Schmidt, J. S., Shalimova, I. A., Sherwood, P., Silva, L. O., Soby, L., Sosedkin, A. P., Speroni, R., Spitsyn, R. I., Tuev, P. V., Turner, M., Velotti, F., Verra, L., Verzilov, V. A., Vieira, J., Welsch, C. P., Williamson, B., Wing, M., Woolley, B., & Xia, G. Acceleration of electrons in the plasma wakefield of a proton bunch. United States. doi:10.1038/s41586-018-0485-4.
Adli, E., Ahuja, A., Apsimon, O., Apsimon, R., Bachmann, A. -M., Barrientos, D., Batsch, F., Bauche, J., Berglyd Olsen, V. K., Bernardini, M., Bohl, T., Bracco, C., Braunmüller, F., Burt, G., Buttenschön, B., Caldwell, A., Cascella, M., Chappell, J., Chevallay, E., Chung, M., Cooke, D., Damerau, H., Deacon, L., Deubner, L. H., Dexter, A., Doebert, S., Farmer, J., Fedosseev, V. N., Fiorito, R., Fonseca, R. A., Friebel, F., Garolfi, L., Gessner, S., Gorgisyan, I., Gorn, A. A., Granados, E., Grulke, O., Gschwendtner, E., Hansen, J., Helm, A., Henderson, J. R., Hüther, M., Ibison, M., Jensen, L., Jolly, S., Keeble, F., Kim, S. -Y., Kraus, F., Li, Y., Liu, S., Lopes, N., Lotov, K. V., Maricalva Brun, L., Martyanov, M., Mazzoni, S., Medina Godoy, D., Minakov, V. A., Mitchell, J., Molendijk, J. C., Moody, J. T., Moreira, M., Muggli, P., Öz, E., Pasquino, C., Pardons, A., Peña Asmus, F., Pepitone, K., Perera, A., Petrenko, A., Pitman, S., Pukhov, A., Rey, S., Rieger, K., Ruhl, H., Schmidt, J. S., Shalimova, I. A., Sherwood, P., Silva, L. O., Soby, L., Sosedkin, A. P., Speroni, R., Spitsyn, R. I., Tuev, P. V., Turner, M., Velotti, F., Verra, L., Verzilov, V. A., Vieira, J., Welsch, C. P., Williamson, B., Wing, M., Woolley, B., and Xia, G. Wed . "Acceleration of electrons in the plasma wakefield of a proton bunch". United States. doi:10.1038/s41586-018-0485-4. https://www.osti.gov/servlets/purl/1543771.
@article{osti_1543771,
title = {Acceleration of electrons in the plasma wakefield of a proton bunch},
author = {Adli, E. and Ahuja, A. and Apsimon, O. and Apsimon, R. and Bachmann, A. -M. and Barrientos, D. and Batsch, F. and Bauche, J. and Berglyd Olsen, V. K. and Bernardini, M. and Bohl, T. and Bracco, C. and Braunmüller, F. and Burt, G. and Buttenschön, B. and Caldwell, A. and Cascella, M. and Chappell, J. and Chevallay, E. and Chung, M. and Cooke, D. and Damerau, H. and Deacon, L. and Deubner, L. H. and Dexter, A. and Doebert, S. and Farmer, J. and Fedosseev, V. N. and Fiorito, R. and Fonseca, R. A. and Friebel, F. and Garolfi, L. and Gessner, S. and Gorgisyan, I. and Gorn, A. A. and Granados, E. and Grulke, O. and Gschwendtner, E. and Hansen, J. and Helm, A. and Henderson, J. R. and Hüther, M. and Ibison, M. and Jensen, L. and Jolly, S. and Keeble, F. and Kim, S. -Y. and Kraus, F. and Li, Y. and Liu, S. and Lopes, N. and Lotov, K. V. and Maricalva Brun, L. and Martyanov, M. and Mazzoni, S. and Medina Godoy, D. and Minakov, V. A. and Mitchell, J. and Molendijk, J. C. and Moody, J. T. and Moreira, M. and Muggli, P. and Öz, E. and Pasquino, C. and Pardons, A. and Peña Asmus, F. and Pepitone, K. and Perera, A. and Petrenko, A. and Pitman, S. and Pukhov, A. and Rey, S. and Rieger, K. and Ruhl, H. and Schmidt, J. S. and Shalimova, I. A. and Sherwood, P. and Silva, L. O. and Soby, L. and Sosedkin, A. P. and Speroni, R. and Spitsyn, R. I. and Tuev, P. V. and Turner, M. and Velotti, F. and Verra, L. and Verzilov, V. A. and Vieira, J. and Welsch, C. P. and Williamson, B. and Wing, M. and Woolley, B. and Xia, G.},
abstractNote = {High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse or electron bunch traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage. Long, thin proton bunches can be used because they undergo a process called self-modulation, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage means that our results are an important step towards the development of future high-energy particle accelerators.},
doi = {10.1038/s41586-018-0485-4},
journal = {Nature (London)},
issn = {0028-0836},
number = 7723,
volume = 561,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Electron Accelerator
journal, July 1979


Electron and Positron Beam–Driven Plasma Acceleration
journal, January 2016


Self-Modulation Instability of a Long Proton Bunch in Plasmas
journal, June 2010


AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN
journal, September 2016

  • Gschwendtner, E.; Adli, E.; Amorim, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 829
  • DOI: 10.1016/j.nima.2016.02.026

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma
journal, February 1985


Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
journal, September 2004

  • Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02939

High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
journal, November 2014


Physics considerations for laser-plasma linear colliders
journal, October 2010

  • Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 10
  • DOI: 10.1103/PhysRevSTAB.13.101301

Interferometer-based high-accuracy white light measurement of neutral rubidium density and gradient at AWAKE
journal, November 2018

  • Batsch, F.; Martyanov, M.; Oez, E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 909
  • DOI: 10.1016/j.nima.2018.02.067

Wakefield generation and GeV acceleration in tapered plasma channels
journal, April 2001


The two-screen measurement setup to indirectly measure proton beam self-modulation in AWAKE
journal, May 2017

  • Turner, M.; Biskup, B.; Burger, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 854
  • DOI: 10.1016/j.nima.2017.02.064

The electron accelerators for the AWAKE experiment at CERN—Baseline and Future Developments
journal, November 2018

  • Pepitone, K.; Doebert, S.; Apsimon, R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 909
  • DOI: 10.1016/j.nima.2018.02.044

BDSIM: A particle tracking code for accelerator beam-line simulations including particle–matter interactions
journal, July 2009

  • Agapov, I.; Blair, G. A.; Malton, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 606, Issue 3
  • DOI: 10.1016/j.nima.2009.04.040

A novel Rb vapor plasma source for plasma wakefield accelerators
journal, March 2014

  • Öz, E.; Muggli, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 740
  • DOI: 10.1016/j.nima.2013.10.093

Collider design issues based on proton-driven plasma wakefield acceleration
journal, March 2014

  • Xia, G.; Mete, O.; Aimidula, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 740
  • DOI: 10.1016/j.nima.2013.11.006

A laser–plasma accelerator producing monoenergetic electron beams
journal, September 2004


Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
journal, February 2007

  • Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef
  • Nature, Vol. 445, Issue 7129
  • DOI: 10.1038/nature05538

Ion Motion in Self-Modulated Plasma Wakefield Accelerators
journal, October 2012


Growth and Phase Velocity of Self-Modulated Beam-Driven Plasma Waves
journal, September 2011


High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
journal, September 2004

  • Geddes, C. G. R.; Toth, Cs.; van Tilborg, J.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02900

Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator
journal, September 2011


VHEeP: a very high energy electron–proton collider
journal, August 2016


Physics of beam self-modulation in plasma wakefield accelerators
journal, October 2015


Physics of laser-driven plasma-based electron accelerators
journal, August 2009


The development of laser- and beam-driven plasma accelerators as an experimental field
journal, May 2007


Proton-driven plasma-wakefield acceleration
journal, April 2009

  • Caldwell, Allen; Lotov, Konstantin; Pukhov, Alexander
  • Nature Physics, Vol. 5, Issue 5
  • DOI: 10.1038/nphys1248

Plasma wakefield acceleration with a modulated proton bunch
journal, October 2011

  • Caldwell, A.; Lotov, K. V.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3641973

A rubidium vapor source for a plasma source for AWAKE
journal, December 2017

  • Plyushchev, G.; Kersevan, R.; Petrenko, A.
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 2
  • DOI: 10.1088/1361-6463/aa9dd7

Path to AWAKE: Evolution of the concept
journal, September 2016

  • Caldwell, A.; Adli, E.; Amorim, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 829
  • DOI: 10.1016/j.nima.2015.12.050

AWAKE readiness for the study of the seeded self-modulation of a 400 GeV proton bunch
journal, November 2017

  • Muggli, P.; Adli, E.; Apsimon, R.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa941c

Numerical studies of electron acceleration behind self-modulating proton beam in plasma with a density gradient
journal, September 2016

  • Petrenko, A.; Lotov, K.; Sosedkin, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 829
  • DOI: 10.1016/j.nima.2016.01.063

Electron acceleration from the breaking of relativistic plasma waves
journal, October 1995

  • Modena, A.; Najmudin, Z.; Dangor, A. E.
  • Nature, Vol. 377, Issue 6550
  • DOI: 10.1038/377606a0

AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN
text, January 2016


    Works referencing / citing this record:

    Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations
    journal, June 2019

    • Martinez de la Ossa, A.; Assmann, R. W.; Bussmann, M.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2018.0175

    Particle physics experiments based on the AWAKE acceleration scheme
    journal, June 2019

    • Wing, M.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2018.0185

    Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations
    journal, June 2019

    • Martinez de la Ossa, A.; Assmann, R. W.; Bussmann, M.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2018.0175

    Particle physics experiments based on the AWAKE acceleration scheme
    journal, June 2019

    • Wing, M.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2018.0185

    High energy proton micro-bunches from a laser plasma accelerator
    journal, September 2019


    Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices
    journal, January 2019

    • Geremew, A. K.; Kargar, F.; Zhang, E. X.
    • Nanoscale, Vol. 11, Issue 17
    • DOI: 10.1039/c9nr01614g

    Witness emittance growth caused by driver density fluctuations in plasma wakefield accelerators
    journal, September 2018

    • Minakov, V. A.; Tacu, M.; Sosedkin, A. P.
    • Physics of Plasmas, Vol. 25, Issue 9
    • DOI: 10.1063/1.5048263

    Mapping electromagnetic fields structure in plasma using a spin polarized electron beam
    journal, December 2019

    • An, X. Y.; Chen, M.; Li, J. X.
    • Physics of Plasmas, Vol. 26, Issue 12
    • DOI: 10.1063/1.5118710

    First fully kinetic three-dimensional simulation of the AWAKE baseline scenario
    journal, September 2019

    • Moschuering, N.; Lotov, K. V.; Bamberg, K.
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 10
    • DOI: 10.1088/1361-6587/ab411e

    Accelerating field enhancement due to ion motion in plasma wakefield accelerators
    journal, October 2019

    • Minakov, V. A.; Sosedkin, A. P.; Lotov, K. V.
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 11
    • DOI: 10.1088/1361-6587/ab41a7

    Tailored plasma-density profiles for enhanced energy extraction in passive plasma beam dumps
    journal, October 2019

    • Jakobsson, O.; Bonatto, A.; Li, Y.
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 12
    • DOI: 10.1088/1361-6587/ab4cfb

    Proton-driven plasma wakefield acceleration in AWAKE
    journal, June 2019

    • Gschwendtner, E.; Turner, M.; Adli, E.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2018.0418

    Directions in plasma wakefield acceleration
    journal, June 2019

    • Hidding, B.; Foster, B.; Hogan, M. J.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2151
    • DOI: 10.1098/rsta.2019.0215

    Radiation beaming in the quantum regime
    journal, January 2020


    Propagation of ultrashort resonant ionizing laser pulses in rubidium vapor
    journal, June 2019


    FACET-II facility for advanced accelerator experimental tests
    journal, October 2019


    Shaping trailing beams for beam loading via beam-induced-ionization injection at FACET
    journal, November 2019


    Visualization of relativistic laser pulses in underdense plasma
    journal, March 2020


    Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection
    journal, October 2019


    Dust-acoustic soliton breaking and the associated acceleration of charged particles
    journal, December 2019


    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch
    journal, February 2019


    Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities
    journal, February 2019