Deformation analysis of SiC-SiC channel box for BWR applications
Journal Article
·
· Journal of Nuclear Materials
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
- Pennsylvania State Univ., State College, PA (United States)
- Univ. of Tennessee, Knoxville, TN (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pennsylvania State Univ., State College, PA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Silicon carbide fiber-reinforced silicon carbide matrix (SiC-SiC) composites are being considered as components in light water reactor cores to improve accident tolerance, including channel boxes and fuel cladding. In the nuclear reactor environment, core components like a channel box will be exposed to neutron and other radiation damage and temperature gradients. To ensure reliable and safe operation of a SiC-SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperatures on the deformation behavior of the channel box over the course of one year. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions that have been calculated using the neutronics and thermal-hydraulics codes Serpent and CTF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5 mm. The channel box bowing behavior is time dependent and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. Furthermore, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Nuclear Energy (NE)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1543232
- Alternate ID(s):
- OSTI ID: 1635945
OSTI ID: 22890010
- Journal Information:
- Journal of Nuclear Materials, Journal Name: Journal of Nuclear Materials Journal Issue: C Vol. 513; ISSN 0022-3115
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Thermodynamic descriptions of the light rare‐earth elements in silicon carbide ceramics
|
journal | February 2020 |
Similar Records
Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation
Impact of Control Blade Insertion on the Deformation Behavior of SiC-SiC Channel Boxes in Boiling Water Reactors
Impact of control blade insertion on the deformation behavior of SiC-SiC channel boxes in BWRs
Technical Report
·
Tue May 01 00:00:00 EDT 2018
·
OSTI ID:1439933
Impact of Control Blade Insertion on the Deformation Behavior of SiC-SiC Channel Boxes in Boiling Water Reactors
Technical Report
·
Tue Oct 01 00:00:00 EDT 2019
·
OSTI ID:1615808
Impact of control blade insertion on the deformation behavior of SiC-SiC channel boxes in BWRs
Journal Article
·
Sun Apr 05 20:00:00 EDT 2020
· Nuclear Engineering and Design
·
OSTI ID:1609050