Here, a novel numerical simulation tool named TOUGH-FEMM is presented and applied to model three-dimensional (3D) hydraulic fracturing in porous rock. The fluid flow in both fractures and porous rock is modeled using TOUGH2, which is a well-established code for analysis of multiphase and multi-component fluid flow. Rock deformations associated with fracture propagation are modeled using finite element-meshfree method (FEMM). FEMM is an approach to simulate fracture propagation without remeshing, in which the fracture path does not need to be predetermined. Fracture mechanics with mixed-mode stress intensity factors are employed to detect fracture instability and determine the direction of fracture propagation. TOUGH-FEMM is confirmed for modeling fluid-driven fracture propagation in 3D through a number of simulation examples, including modeling of hydraulic fracturing laboratory experiments and by comparison to independent numerical simulation results for multiple interacting hydraulic fractures at ten to hundred meter scale.
Tang, Xuhai, et al. "Modeling Three-Dimensional Fluid-Driven Propagation of Multiple Fractures using TOUGH-FEMM." Rock Mechanics and Rock Engineering, vol. 52, no. 2, Jan. 2019. https://doi.org/10.1007/s00603-018-1715-7
Tang, Xuhai, Rutqvist, Jonny, Hu, Mengsu, et al., "Modeling Three-Dimensional Fluid-Driven Propagation of Multiple Fractures using TOUGH-FEMM," Rock Mechanics and Rock Engineering 52, no. 2 (2019), https://doi.org/10.1007/s00603-018-1715-7
@article{osti_1542359,
author = {Tang, Xuhai and Rutqvist, Jonny and Hu, Mengsu and Rayudu, Nithin Manohar},
title = {Modeling Three-Dimensional Fluid-Driven Propagation of Multiple Fractures using TOUGH-FEMM},
annote = {Here, a novel numerical simulation tool named TOUGH-FEMM is presented and applied to model three-dimensional (3D) hydraulic fracturing in porous rock. The fluid flow in both fractures and porous rock is modeled using TOUGH2, which is a well-established code for analysis of multiphase and multi-component fluid flow. Rock deformations associated with fracture propagation are modeled using finite element-meshfree method (FEMM). FEMM is an approach to simulate fracture propagation without remeshing, in which the fracture path does not need to be predetermined. Fracture mechanics with mixed-mode stress intensity factors are employed to detect fracture instability and determine the direction of fracture propagation. TOUGH-FEMM is confirmed for modeling fluid-driven fracture propagation in 3D through a number of simulation examples, including modeling of hydraulic fracturing laboratory experiments and by comparison to independent numerical simulation results for multiple interacting hydraulic fractures at ten to hundred meter scale.},
doi = {10.1007/s00603-018-1715-7},
url = {https://www.osti.gov/biblio/1542359},
journal = {Rock Mechanics and Rock Engineering},
issn = {ISSN 0723-2632},
number = {2},
volume = {52},
place = {United States},
publisher = {Springer},
year = {2019},
month = {01}}