skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synchronization-Avoiding Graph Algorithms

Conference ·

Because they were developed for optimal sequential complexity, classical graph algorithms as found in textbooks have strictly-defined orders of operations. Enforcing a prescribed order of operations, or even an approximate order, in a distributed memory setting requires significant amounts of synchronization, which in turn can severely limit scalability. As a result, new algorithms are typically required to achieve scalable performance, even for solving well-known graph problems. Yet, even in these cases, parallel graph algorithms are written according to parallel programming models that evolved for, e.g., scientific computing, and that still have inherent, and scalability-limiting, amounts of synchronization. In this paper we present a new approach to parallel graph algorithms: synchronization-avoiding algorithms. To eliminate synchronization and its associated overhead, synchronization-avoiding algorithms perform work in an unordered and fully asynchronous fashion in such a way that the result is constantly refined toward its final state. “Wasted” work is minimized by locally prioritizing tasks using problem-dependent task utility metrics. We classify algorithms for graph applications into two broad categories: algorithms with monotonic updates (which evince global synchronization) and algorithms with nonmonotonic updates (which evince vertex-centric synchronization). We apply our approach to both classes and develop novel, synchronization-avoiding algorithms for solving exemplar problems: SSSP and connected components for the former, graph coloring for the latter. We demonstrate that eliminating synchronization in conjunction with effective scheduling policies and optimizations in the runtime results in improved scalability for both classes of algorithms.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1515043
Report Number(s):
PNNL-SA-138656
Resource Relation:
Conference: IEEE 25th International Conference on High Performance Computing (HiPC 2018), December 17-20, 2018, Bengaluru, India
Country of Publication:
United States
Language:
English

Related Subjects