skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global land model development: time to shift from a plant functional type to a plant functional trait approach (Final Report)

Technical Report ·
DOI:https://doi.org/10.2172/1512943· OSTI ID:1512943
 [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)

This project advanced global land models by shifting from the current plant functional type approach to one that better utilizes what is known about the importance and variability of plant traits, within a framework of simultaneously improving fundamental physiological relations that are at the core of model carbon cycling algorithms. A primary goal for Earth system modeling is to make accurate predictions of the future trajectory of the climate system, based on a mechanistic understanding of processes regulating fluxes of mass and energy among system components. Land plays an important role in modifying the Earth’s mass and energy balance, as a critical link in the global cycling of carbon, among others. Land surface models have developed to include mechanistic representations of vegetation physiology, carbon and nutrient dynamics in plants and soils, how they might respond to changing climate and chemistry, and how those changes might feedback to influence changes in atmospheric greenhouse gases themselves. Existing models represent the global distribution of vegetation types using the Plant Functional Type concept. Plant Functional Types are classes of plant species with similar evolutionary and life history with presumably similar responses to environmental conditions like CO2, water and nutrient availability. Fixed properties for each Plant Functional Type are specified through a collection of physiological parameters, or traits. These traits, mostly physiological in nature (e.g., leaf nitrogen and longevity) are used in model algorithms to estimate ecosystem properties and/or drive calculated process rates. In most models, 5 to 15 functional types represent terrestrial vegetation; in essence, they assume there are a total of only 5 to 15 different kinds of plants on the entire globe. This assumption of constant plant traits captured within the functional type concept has serious limitations, as a single set of traits does not reflect trait variation observed within and between species and communities. While this simplification was necessary decades past, substantial improvement is now possible. Rather than assigning a small number of constant parameter values to all grid cells in a model, we developed procedures that predict a frequency distribution of values for any given grid cell. Thus, by incorporating the mean and variance model fidelity has been improved. The trait-based approach has improved land modeling by (1) incorporating patterns and heterogeneity of traits into model parameterization, thus evolving away from a framework that considers large areas of vegetation to have near identical trait values and (2) allowing for improved treatment of physiological responses to environmental drivers.

Research Organization:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
SC0012677
OSTI ID:
1512943
Report Number(s):
DOE-UMN-12677
Country of Publication:
United States
Language:
English