skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration

Abstract

Hexagonal boron nitride (h-BN) has been predicted to exhibit an in-plane thermal conductivity as high as ~ 550 W m –1 K –1 at room temperature, making it a promising thermal management material. However, current experimental results (220–420 m –1 K –1) have been well below the prediction. Here, we report on the modulation of h-BN thermal conductivity by controlling the B isotope concentration. For monoisotopic 10B h-BN, an in-plane thermal conductivity as high as 585 W m –1 K –1 is measured at room temperature, ~ 80% higher than that of h-BN with a disordered isotope concentration (52%:48% mixture of 10B and 11B). The temperature-dependent thermal conductivities of monoisotopic h-BN agree well with first principles calculations including only intrinsic phonon-phonon scattering. Our results illustrate the potential to achieve high thermal conductivity in h-BN and control its thermal conductivity, opening avenues for the wide application of h-BN as a next-generation thin-film material for thermal management, metamaterials and metadevices.

Authors:
 [1];  [2]; ORCiD logo [3];  [1];  [1]; ORCiD logo [2];  [2];  [1]
  1. Bristol Univ. (United Kingdom)
  2. Kansas State Univ., Manhattan, KS (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1511942
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Communications Physics
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2399-3650
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Yuan, Chao, Li, Jiahan, Lindsay, Lucas, Cherns, David, Pomeroy, James W., Liu, Song, Edgar, James H., and Kuball, Martin. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. United States: N. p., 2019. Web. doi:10.1038/s42005-019-0145-5.
Yuan, Chao, Li, Jiahan, Lindsay, Lucas, Cherns, David, Pomeroy, James W., Liu, Song, Edgar, James H., & Kuball, Martin. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. United States. doi:10.1038/s42005-019-0145-5.
Yuan, Chao, Li, Jiahan, Lindsay, Lucas, Cherns, David, Pomeroy, James W., Liu, Song, Edgar, James H., and Kuball, Martin. Thu . "Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration". United States. doi:10.1038/s42005-019-0145-5. https://www.osti.gov/servlets/purl/1511942.
@article{osti_1511942,
title = {Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration},
author = {Yuan, Chao and Li, Jiahan and Lindsay, Lucas and Cherns, David and Pomeroy, James W. and Liu, Song and Edgar, James H. and Kuball, Martin},
abstractNote = {Hexagonal boron nitride (h-BN) has been predicted to exhibit an in-plane thermal conductivity as high as ~ 550 W m–1 K–1 at room temperature, making it a promising thermal management material. However, current experimental results (220–420 m–1 K–1) have been well below the prediction. Here, we report on the modulation of h-BN thermal conductivity by controlling the B isotope concentration. For monoisotopic 10B h-BN, an in-plane thermal conductivity as high as 585 W m–1 K–1 is measured at room temperature, ~ 80% higher than that of h-BN with a disordered isotope concentration (52%:48% mixture of 10B and 11B). The temperature-dependent thermal conductivities of monoisotopic h-BN agree well with first principles calculations including only intrinsic phonon-phonon scattering. Our results illustrate the potential to achieve high thermal conductivity in h-BN and control its thermal conductivity, opening avenues for the wide application of h-BN as a next-generation thin-film material for thermal management, metamaterials and metadevices.},
doi = {10.1038/s42005-019-0145-5},
journal = {Communications Physics},
issn = {2399-3650},
number = 1,
volume = 2,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Hexagonal boron nitride (h-BN) crystals Raman and microstructural characterizations. a Raman spectra of the E2g mode, obtained using 532 nm excitation, of the 99% 10B (monoisotopic 10B), 48% 11B (isotopically disordered), 78% 11B (near-natural), and 99% 11B (monoisotopic 11B) h-BN samples at room temperature. b Selected area electronmore » diffraction (SAED) image, showing a hexagonal diffraction pattern consistent with diffraction into (hki0) reflections and a [0001] surface normal of the specimen. c Scanning electron microscopy (SEM) micrograph, steps are marked with yellow arrows; scale bar, 100 μm. d, e Electron back-scattered diffraction (EBSD) color map obtained by scanning a selected (60 µm × 90 µm) area with 1 µm step size: d inverse pole figure, illustrating the top surface of the sample being the (0001) plane of the hexagonal structure of h-BN. e Orientation deviation mapping, showing misorientation (tilt) up to ~ 2° between grains; scale bar is 30 μm. f Bright-field and g dark-field transmission electron microscopy (TEM) images under two beam diffracting conditions with g = 11$\bar2$0, in-plane (near-screw) dislocations were observed (indicated by purple arrows) in (f), which dissociated into closely spaced partial dislocations (indicated by yellow arrows) in (g); scale bar is 1 μm. h Bright-field TEM image, sub-grain boundary, visible as fringes indicated by purple arrows; scale bar is 1 μm. Note that using TEM, the crystal was found to have areas a few tens of microns across which were free of defects. Images (f–h) were taken at selected area of h-BN where defects were observed« less

Save / Share:

Works referenced in this record:

Recent Development of Boron Nitride towards Electronic Applications
journal, April 2017

  • Izyumskaya, Natalia; Demchenko, Denis O.; Das, Saikat
  • Advanced Electronic Materials, Vol. 3, Issue 5
  • DOI: 10.1002/aelm.201600485

Thermal diffusivity of isotopically enriched C 12 diamond
journal, July 1990


Thermal conductivity of InN with point defects from first principles
journal, July 2018


Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously
journal, November 2014


Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study
journal, October 2013


A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity
journal, November 2013

  • Ma, Yungui; Lan, Lu; Jiang, Wei
  • NPG Asia Materials, Vol. 5, Issue 11
  • DOI: 10.1038/am.2013.60

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Heat guiding and focusing using ballistic phonon transport in phononic nanostructures
journal, May 2017

  • Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15505

Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction
journal, February 1999


Ultralow-loss polaritons in isotopically pure boron nitride
journal, December 2017

  • Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor
  • Nature Materials, Vol. 17, Issue 2
  • DOI: 10.1038/nmat5047

Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Thermal conductivity of isotopically modified graphene
journal, January 2012

  • Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3207

Isotope effect in the thermal conductivity of germanium single crystals
journal, March 1996

  • Ozhogin, V. I.; Inyushkin, A. V.; Taldenkov, A. N.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 63, Issue 6
  • DOI: 10.1134/1.567053

Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
journal, October 2011


Flexural phonons and thermal transport in multilayer graphene and graphite
journal, June 2011


Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing
journal, June 2015

  • Li, Peining; Lewin, Martin; Kretinin, Andrey V.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8507

Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths
journal, October 2014

  • Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl502059f

Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
journal, July 2017

  • Jiang, Puqing; Qian, Xin; Yang, Ronggui
  • Review of Scientific Instruments, Vol. 88, Issue 7
  • DOI: 10.1063/1.4991715

Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride
journal, September 2009

  • Watanabe, Kenji; Taniguchi, Takashi; Niiyama, Takahiro
  • Nature Photonics, Vol. 3, Issue 10
  • DOI: 10.1038/nphoton.2009.167

Heat Flux Manipulation with Engineered Thermal Materials
journal, May 2012


Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride
journal, May 1976


Anisotropic thermal transport in bulk hexagonal boron nitride
journal, June 2018


The thermal conductivity of highly oriented pyrolytic boron nitride
journal, September 1971


A bifunctional cloak using transformation media
journal, October 2010

  • Li, J. Y.; Gao, Y.; Huang, J. P.
  • Journal of Applied Physics, Vol. 108, Issue 7
  • DOI: 10.1063/1.3490226

Thermal conductivity of isotopically enriched 71 GaAs crystal
journal, June 2003

  • Inyushkin, A. V.; Taldenkov, A. N.; Yakubovsky, A. Yu
  • Semiconductor Science and Technology, Vol. 18, Issue 7
  • DOI: 10.1088/0268-1242/18/7/315

Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10?297.5�K temperature range
journal, September 2002

  • Paszkowicz, W.; Pelka, J. B.; Knapp, M.
  • Applied Physics A: Materials Science & Processing, Vol. 75, Issue 3
  • DOI: 10.1007/s003390100999

Three-phonon phase space and lattice thermal conductivity in semiconductors
journal, March 2008


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Single Crystal Growth of Millimeter-Sized Monoisotopic Hexagonal Boron Nitride
journal, September 2018


Assessment of Thermal Properties via Nanosecond Thermoreflectance Method
journal, October 2015

  • Garrelts, Richard; Marconnet, Amy; Xu, Xianfan
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 19, Issue 4
  • DOI: 10.1080/15567265.2015.1078425

Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding
journal, June 2018

  • Xie, Bin; Liu, Haochen; Hu, Run
  • Advanced Functional Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adfm.201801407

Bulk Hexagonal Boron Nitride with a Quasi-Isotropic Thermal Conductivity
journal, May 2018

  • Mateti, Srikanth; Yang, Keqin; Liu, Xuan
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201707556

Exceptionally Strong Phonon Scattering by B Substitution in Cubic SiC
journal, August 2017


Inhomogeneous Electron Gas
journal, November 1964


Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point
journal, May 1964


Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation
journal, May 2017


Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots
journal, October 2012

  • Feser, Joseph P.; Cahill, David G.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757863

Isotope engineering of van der Waals interactions in hexagonal boron nitride
journal, December 2017

  • Vuong, T. Q. P.; Liu, S.; Van der Lee, A.
  • Nature Materials, Vol. 17, Issue 2
  • DOI: 10.1038/nmat5048

Illusory spirals and loops in crystal growth
journal, October 2013

  • Shtukenberg, A. G.; Zhu, Z.; An, Z.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 43
  • DOI: 10.1073/pnas.1311637110

Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
journal, November 2002


Experimental investigation of thermal conduction normal to diamond‐silicon boundaries
journal, February 1995

  • Goodson, K. E.; Käding, O. W.; Rösler, M.
  • Journal of Applied Physics, Vol. 77, Issue 4
  • DOI: 10.1063/1.358950

Heat-Transport Mechanisms in Superlattices
journal, February 2009

  • Koh, Yee Kan; Cao, Yu; Cahill, David G.
  • Advanced Functional Materials, Vol. 19, Issue 4
  • DOI: 10.1002/adfm.200800984

First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review
journal, April 2016


Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets
journal, March 2015

  • Yuan, Chao; Duan, Bin; Li, Lan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 23
  • DOI: 10.1021/acsami.5b03007

Two-dimensional flexible nanoelectronics
journal, December 2014

  • Akinwande, Deji; Petrone, Nicholas; Hone, James
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6678

Thermal conductivity of isotopically modified single crystal diamond
journal, June 1993


A transmission-line theory for heat conduction in multilayer thin films
journal, January 1994

  • Hui, P.; Tan, H. S.
  • IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, Vol. 17, Issue 3
  • DOI: 10.1109/96.311793

On the isotope effect in thermal conductivity of silicon
journal, November 2004

  • Inyushkin, A. V.; Taldenkov, A. N.; Gibin, A. M.
  • physica status solidi (c), Vol. 1, Issue 11
  • DOI: 10.1002/pssc.200405341

Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

    Works referencing / citing this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.