skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum molecular dynamics of warm dense iron and a five-phase equation of state

Abstract

Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7–30/ cm 3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find a significant improvement at high pressure to the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)]. Here, our results also significantly extend the ranges of density and temperature that were attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. Finally, these results are then incorporated with previous studies to generate a five-phase equation of state for iron.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1511602
Alternate Identifier(s):
OSTI ID: 1438959
Report Number(s):
LA-UR-17-28620
Journal ID: ISSN 2470-0045; PLEEE8
Grant/Contract Number:  
89233218CNA000001; AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 97; Journal Issue: 5; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Sjostrom, Travis, and Crockett, Scott. Quantum molecular dynamics of warm dense iron and a five-phase equation of state. United States: N. p., 2018. Web. doi:10.1103/PhysRevE.97.053209.
Sjostrom, Travis, & Crockett, Scott. Quantum molecular dynamics of warm dense iron and a five-phase equation of state. United States. doi:10.1103/PhysRevE.97.053209.
Sjostrom, Travis, and Crockett, Scott. Thu . "Quantum molecular dynamics of warm dense iron and a five-phase equation of state". United States. doi:10.1103/PhysRevE.97.053209. https://www.osti.gov/servlets/purl/1511602.
@article{osti_1511602,
title = {Quantum molecular dynamics of warm dense iron and a five-phase equation of state},
author = {Sjostrom, Travis and Crockett, Scott},
abstractNote = {Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7–30/ cm3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find a significant improvement at high pressure to the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)]. Here, our results also significantly extend the ranges of density and temperature that were attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. Finally, these results are then incorporated with previous studies to generate a five-phase equation of state for iron.},
doi = {10.1103/PhysRevE.97.053209},
journal = {Physical Review E},
issn = {2470-0045},
number = 5,
volume = 97,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

AM363 martensitic stainless steel: A multiphase equation of state
conference, January 2017

  • De Lorenzi-Venneri, Giulia; Crockett, Scott D.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.4971554

Projector augmented-wave method
journal, December 1994


Metastability and dynamics of the shock-induced phase transition in iron
journal, February 1997


High-pressure magnetic transition in hcp-Fe
journal, May 2010

  • Ono, S.; Kikegawa, T.; Hirao, N.
  • American Mineralogist, Vol. 95, Issue 5-6
  • DOI: 10.2138/am.2010.3430

Stable phases of iron at terapascal pressures
journal, October 2009


Equations of State of Elements Based on the Generalized Fermi-Thomas Theory
journal, May 1949


Physics of Iron at Earth's Core Conditions
journal, February 2000


Shock-Wave Compressions of Twenty-Seven Metals. Equations of State of Metals
journal, October 1957

  • Walsh, John M.; Rice, Melvin H.; McQueen, Robert G.
  • Physical Review, Vol. 108, Issue 2
  • DOI: 10.1103/PhysRev.108.196

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth
journal, October 2016

  • Ćuk, Matija; Hamilton, Douglas P.; Lock, Simon J.
  • Nature, Vol. 539, Issue 7629
  • DOI: 10.1038/nature19846

Shock-wave experiments at threefold compression
journal, March 1984


Die thermodynamischen Funktionen des reinen Eisens Wärmeinhalt und spezifische Wärme austenitischer Eisenlegierungen und Stähle
journal, May 1963

  • Kohlhaas, Rudolf; Braun, Martin
  • Archiv für das Eisenhüttenwesen, Vol. 34, Issue 5
  • DOI: 10.1002/srin.196303459

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Shock compression of two iron-silicon alloys to 2.7 megabars
journal, July 1966


Hugoniot data for iron
journal, November 2000

  • Brown, J. M.; Fritz, J. N.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 88, Issue 9
  • DOI: 10.1063/1.1319320

Shock adiabatic curves of metals: New data, statistical analysis, and general laws
journal, January 1981

  • Al'tshuler, L. V.; Bakanova, A. A.; Dudoladov, I. P.
  • Journal of Applied Mechanics and Technical Physics, Vol. 22, Issue 2
  • DOI: 10.1007/BF00907938

Explosive laboratory devices for shock wave compression studies
journal, May 1996


Very-high-temperature molecular dynamics
journal, January 2006


Static compression of iron to 300 GPa and Fe 0.8 Ni 0.2 alloy to 260 GPa: Implications for composition of the core
journal, January 1990


Quasihydrostatic Equation of State of Iron above 2 Mbar
journal, November 2006


Melting of iron at the physical conditions of the Earth's core
journal, January 2004


Quantum molecular dynamics study of warm dense iron
journal, February 2014


Wide-range multiphase equation of state for iron
journal, September 2014


Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa
journal, June 2016

  • Denoeud, Adrien; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 28
  • DOI: 10.1073/pnas.1512127113

Mass‐Radius Relationships for Solid Exoplanets
journal, November 2007

  • Seager, S.; Kuchner, M.; Hier‐Majumder, C. A.
  • The Astrophysical Journal, Vol. 669, Issue 2
  • DOI: 10.1086/521346

Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: Application to silicon dioxide
journal, September 2015


A generic model for the ionic contribution to the equation of state
journal, December 1991


Equation of state of the alpha and epsilon phases of iron
journal, May 1973


Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars
journal, July 1960

  • McQueen, R. G.; Marsh, S. P.
  • Journal of Applied Physics, Vol. 31, Issue 7
  • DOI: 10.1063/1.1735815

Reference Data for the Density and Viscosity of Liquid Aluminum and Liquid Iron
journal, March 2006

  • Assael, Marc J.; Kakosimos, Konstantinos; Banish, R. Michael
  • Journal of Physical and Chemical Reference Data, Vol. 35, Issue 1
  • DOI: 10.1063/1.2149380

Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


Thermodynamic Properties of Iron and Silicon
journal, July 1986

  • Desai, P. D.
  • Journal of Physical and Chemical Reference Data, Vol. 15, Issue 3
  • DOI: 10.1063/1.555761

High Pressure and High Temperature Equation-of-State of Gamma and Liquid Iron
journal, January 1997


Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K
journal, March 2017

  • Dorogokupets, P. I.; Dymshits, A. M.; Litasov, K. D.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41863

Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa
journal, June 1986

  • Brown, J. Michael; McQueen, Robert G.
  • Journal of Geophysical Research: Solid Earth, Vol. 91, Issue B7
  • DOI: 10.1029/JB091iB07p07485

Equation of State Data for Iron at Pressures beyond 10 Mbar
journal, May 2002


Ab initio equation of state of iron up to 1500 GPa
journal, March 2013