skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global Carbon Budget 2018

Abstract

Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components ofthe global carbon budget and their uncertainties. Fossil CO 2emissions ( E FF) are based on energy statistics and cement production data, while emissions from land use and land-use change ( E LUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO 2 concentration is measured directly and its growth rate ( G ATM) is computed from the annual changes in concentration. The ocean CO 2 sink ( S OCEAN) and terrestrial CO 2 sink ( S LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ. For themore » last decade available (2008–2017), E FF was9.4±0.5 GtC yr -1, E LUC 1.5±0.7 GtC yr -1, G ATM 4.7±0.02 GtC yr -1, S OCEAN 2.4±0.5 GtC yr -1, and S LAND 3.2±0.8 GtC yr -1, with a budget imbalance B IM of0.5 GtC yr -1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E FF was about 1.6 %and emissions increased to 9.9±0.5 GtC yr -1. Also for 2017, E LUC was 1.4±0.7 GtC yr -1, G ATM was 4.6±0.2 GtC yr -1, S OCEAN was 2.5±0.5 GtC yr -1, and S LAND was 3.8±0.8 GtC yr -1,with a B IM of 0.3 GtC. The global atmosphericCO 2 concentration reached 405.0±0.1 ppm averaged over 2017.For 2018, preliminary data for the first 6–9 months indicate a renewed growth in E FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017,but discrepancies of up to 1 GtC yr -1 persist for the representation of semi-decadal variability in CO 2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO 2 flux in the northern extra-tropics,and (3) an apparent underestimation of the CO 2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016,2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [4];  [5];  [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [6];  [7];  [8];  [9]; ORCiD logo [10];  [11]; ORCiD logo [12];  [13];  [12];  [14];  [15] more »;  [12];  [1];  [16]; ORCiD logo [17]; ORCiD logo [4];  [18]; ORCiD logo [13];  [19]; ORCiD logo [20]; ORCiD logo [21]; ORCiD logo [22]; ORCiD logo [23]; ORCiD logo [24];  [25];  [19];  [26]; ORCiD logo [27]; ORCiD logo [28];  [29];  [26];  [30]; ORCiD logo [19];  [31];  [32];  [33];  [34]; ORCiD logo [35];  [36]; ORCiD logo [37];  [36];  [38];  [9];  [39]; ORCiD logo [40];  [41];  [42];  [43]; ORCiD logo [44];  [3];  [45];  [43];  [45];  [46]; ORCiD logo [47];  [48]; ORCiD logo [49]; ORCiD logo [32];  [50]; ORCiD logo [51];  [52]; ORCiD logo [12]; ORCiD logo [17];  [22]; ORCiD logo [1]; ORCiD logo [44];  [12] « less
  1. University of East Anglia, Norwich (United Kingdom)
  2. CICERO Center for International Climate Research, Oslo (Norway)
  3. University of Exeter (United Kingdom)
  4. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Postfach (Germany)
  5. Ludwig-Maximilians-Universität Munich, Luisenstr (Germany); Max Planck Institute for Meteorology, Hamburg (Germany)
  6. Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra (Australia)
  7. Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research (Germany)
  8. Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada)
  9. University of Miami, FL (United States); National Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory (NOAA/AOML), Miami, FL (United States)
  10. Ludwig-Maximilians-Universität Munich (Germany)
  11. Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Paris (France)
  12. Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, CE Orme des Merisiers (France)
  13. Univ. of Maryland, College Park, MD (United States)
  14. Univ. of Virginia, Charlottesville, VA (United States)
  15. Flanders Marine Institute (VLIZ) (Belgium)
  16. CSIRO Oceans and Atmosphere, Canberra (Australia)
  17. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  18. Woods Hole Research Center (WHRC), Falmouth, MA (United States)
  19. Max Planck Institute for Meteorology, Hamburg (Germany)
  20. Univ. of Illinois, Urbana, IL (United States)
  21. University of Bergen and Bjerknes Centre for Climate Research, Allégaten (Norway)
  22. Met Office Hadley Centre, Exeter (United Kingdom)
  23. Institute of Applied Energy (IAE), Minato-ku, Tokyo (Japan)
  24. Univ. of California, San Diego, CA (United States)
  25. PBL Netherlands Environmental Assessment Agency (The Netherlands)
  26. Sorbonne Universités (UPMC, Univ Paris 06) (France)
  27. University of Bern (Switzerland)
  28. University of East Anglia, Norwich (United Kingdom); Tsinghua Univ., Beijing (China)
  29. National Center for Atmospheric Research, Boulder, CO (United States)
  30. Univ. of Colorado, Boulder, CO (United States)
  31. Center for Global Environmental Research, National Institute for Environmental Studies (NIES), Tsukuba (Japan)
  32. CSIRO Oceans and Atmosphere, Hobart, Tasmania (Australia); University of Tasmania, Hobart (Australia)
  33. University of Bergen and Bjerknes Centre for Climate Research (Norway)
  34. National Research Institute for Far Sea Fisheries, Japan Fisheries Research and Education Agency, Kanazawa-Ku (Japan)
  35. JAMSTEC, Yokohama (Japan)
  36. Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, Gif-sur-Yvette (France)
  37. Wageningen University & Research (The Netherlands); University of Groningen, Nijenborgh (The Netherlands)
  38. University of Bergen and Bjerknes Centre for Climate Research (Norway); NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen (Norway)
  39. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  40. Leibniz Institute for Baltic Sea Research Warnemünde, Rostock (Germany)
  41. Princeton Univ., NJ (United States)
  42. Met Office Hadley Centre, Exeter (United States)
  43. Centre National de Recherche Météorologique, Unite mixte de recherche 3589 Météo-France/CNRS, Toulouse (France)
  44. Max Planck Institute for Biogeochemistry, Jena (Germany)
  45. NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen (Norway)
  46. GEOMAR Helmholtz Centre for Ocean Research Kiel (Germany)
  47. National Oceanic & Atmospheric Administration/Pacific Marine Environmental Laboratory (NOAA/PMEL), Seattle, WA (United States)
  48. National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), Boulder, CO (United States)
  49. Auburn Univ., AL (United States)
  50. Food and Agriculture Organization of the United Nations, Rome (Italy)
  51. Wageningen University & Research (The Netherlands)
  52. Vrije Universiteit, Amsterdam (The Netherlands)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1502552
Grant/Contract Number:  
AC05-00OR22725; SC0000016323; FC03-97ER62402; SC0012972
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Earth System Science Data (Online)
Additional Journal Information:
Journal Volume: 10; Journal Issue: 4; Journal ID: ISSN 1866-3516
Publisher:
Copernicus
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES

Citation Formats

Le Quéré, Corinne, Andrew, Robbie M., Friedlingstein, Pierre, Sitch, Stephen, Hauck, Judith, Pongratz, Julia, Pickers, Penelope A., Korsbakken, Jan Ivar, Peters, Glen P., Canadell, Josep G., Arneth, Almut, Arora, Vivek K., Barbero, Leticia, Bastos, Ana, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Doney, Scott C., Gkritzalis, Thanos, Goll, Daniel S., Harris, Ian, Haverd, Vanessa, Hoffman, Forrest M., Hoppema, Mario, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Johannessen, Truls, Jones, Chris D., Kato, Etsushi, Keeling, Ralph F., Goldewijk, Kees Klein, Landschützer, Peter, Lefèvre, Nathalie, Lienert, Sebastian, Liu, Zhu, Lombardozzi, Danica, Metzl, Nicolas, Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, Neill, Craig, Olsen, Are, Ono, Tsueno, Patra, Prabir, Peregon, Anna, Peters, Wouter, Peylin, Philippe, Pfeil, Benjamin, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rocher, Matthias, Rödenbeck, Christian, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Steinhoff, Tobias, Sutton, Adrienne, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., van der Laan-Luijkx, Ingrid T., van der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Wright, Rebecca, Zaehle, Sönke, and Zheng, Bo. Global Carbon Budget 2018. United States: N. p., 2018. Web. doi:10.5194/essd-10-2141-2018.
Le Quéré, Corinne, Andrew, Robbie M., Friedlingstein, Pierre, Sitch, Stephen, Hauck, Judith, Pongratz, Julia, Pickers, Penelope A., Korsbakken, Jan Ivar, Peters, Glen P., Canadell, Josep G., Arneth, Almut, Arora, Vivek K., Barbero, Leticia, Bastos, Ana, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Doney, Scott C., Gkritzalis, Thanos, Goll, Daniel S., Harris, Ian, Haverd, Vanessa, Hoffman, Forrest M., Hoppema, Mario, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Johannessen, Truls, Jones, Chris D., Kato, Etsushi, Keeling, Ralph F., Goldewijk, Kees Klein, Landschützer, Peter, Lefèvre, Nathalie, Lienert, Sebastian, Liu, Zhu, Lombardozzi, Danica, Metzl, Nicolas, Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, Neill, Craig, Olsen, Are, Ono, Tsueno, Patra, Prabir, Peregon, Anna, Peters, Wouter, Peylin, Philippe, Pfeil, Benjamin, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rocher, Matthias, Rödenbeck, Christian, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Steinhoff, Tobias, Sutton, Adrienne, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., van der Laan-Luijkx, Ingrid T., van der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Wright, Rebecca, Zaehle, Sönke, & Zheng, Bo. Global Carbon Budget 2018. United States. doi:10.5194/essd-10-2141-2018.
Le Quéré, Corinne, Andrew, Robbie M., Friedlingstein, Pierre, Sitch, Stephen, Hauck, Judith, Pongratz, Julia, Pickers, Penelope A., Korsbakken, Jan Ivar, Peters, Glen P., Canadell, Josep G., Arneth, Almut, Arora, Vivek K., Barbero, Leticia, Bastos, Ana, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Ciais, Philippe, Doney, Scott C., Gkritzalis, Thanos, Goll, Daniel S., Harris, Ian, Haverd, Vanessa, Hoffman, Forrest M., Hoppema, Mario, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Johannessen, Truls, Jones, Chris D., Kato, Etsushi, Keeling, Ralph F., Goldewijk, Kees Klein, Landschützer, Peter, Lefèvre, Nathalie, Lienert, Sebastian, Liu, Zhu, Lombardozzi, Danica, Metzl, Nicolas, Munro, David R., Nabel, Julia E. M. S., Nakaoka, Shin-ichiro, Neill, Craig, Olsen, Are, Ono, Tsueno, Patra, Prabir, Peregon, Anna, Peters, Wouter, Peylin, Philippe, Pfeil, Benjamin, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rocher, Matthias, Rödenbeck, Christian, Schuster, Ute, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Steinhoff, Tobias, Sutton, Adrienne, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., van der Laan-Luijkx, Ingrid T., van der Werf, Guido R., Viovy, Nicolas, Walker, Anthony P., Wiltshire, Andrew J., Wright, Rebecca, Zaehle, Sönke, and Zheng, Bo. Wed . "Global Carbon Budget 2018". United States. doi:10.5194/essd-10-2141-2018. https://www.osti.gov/servlets/purl/1502552.
@article{osti_1502552,
title = {Global Carbon Budget 2018},
author = {Le Quéré, Corinne and Andrew, Robbie M. and Friedlingstein, Pierre and Sitch, Stephen and Hauck, Judith and Pongratz, Julia and Pickers, Penelope A. and Korsbakken, Jan Ivar and Peters, Glen P. and Canadell, Josep G. and Arneth, Almut and Arora, Vivek K. and Barbero, Leticia and Bastos, Ana and Bopp, Laurent and Chevallier, Frédéric and Chini, Louise P. and Ciais, Philippe and Doney, Scott C. and Gkritzalis, Thanos and Goll, Daniel S. and Harris, Ian and Haverd, Vanessa and Hoffman, Forrest M. and Hoppema, Mario and Houghton, Richard A. and Hurtt, George and Ilyina, Tatiana and Jain, Atul K. and Johannessen, Truls and Jones, Chris D. and Kato, Etsushi and Keeling, Ralph F. and Goldewijk, Kees Klein and Landschützer, Peter and Lefèvre, Nathalie and Lienert, Sebastian and Liu, Zhu and Lombardozzi, Danica and Metzl, Nicolas and Munro, David R. and Nabel, Julia E. M. S. and Nakaoka, Shin-ichiro and Neill, Craig and Olsen, Are and Ono, Tsueno and Patra, Prabir and Peregon, Anna and Peters, Wouter and Peylin, Philippe and Pfeil, Benjamin and Pierrot, Denis and Poulter, Benjamin and Rehder, Gregor and Resplandy, Laure and Robertson, Eddy and Rocher, Matthias and Rödenbeck, Christian and Schuster, Ute and Schwinger, Jörg and Séférian, Roland and Skjelvan, Ingunn and Steinhoff, Tobias and Sutton, Adrienne and Tans, Pieter P. and Tian, Hanqin and Tilbrook, Bronte and Tubiello, Francesco N. and van der Laan-Luijkx, Ingrid T. and van der Werf, Guido R. and Viovy, Nicolas and Walker, Anthony P. and Wiltshire, Andrew J. and Wright, Rebecca and Zaehle, Sönke and Zheng, Bo},
abstractNote = {Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components ofthe global carbon budget and their uncertainties. Fossil CO2emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was9.4±0.5 GtC yr-1, ELUC 1.5±0.7 GtC yr-1, GATM 4.7±0.02 GtC yr-1, SOCEAN 2.4±0.5 GtC yr-1, and SLAND 3.2±0.8 GtC yr-1, with a budget imbalance BIM of0.5 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 %and emissions increased to 9.9±0.5 GtC yr-1. Also for 2017,ELUC was 1.4±0.7 GtC yr-1, GATM was 4.6±0.2 GtC yr-1, SOCEAN was 2.5±0.5 GtC yr-1, and SLAND was 3.8±0.8 GtC yr-1,with a BIM of 0.3 GtC. The global atmosphericCO2 concentration reached 405.0±0.1 ppm averaged over 2017.For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017,but discrepancies of up to 1 GtC yr-1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics,and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016,2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.},
doi = {10.5194/essd-10-2141-2018},
journal = {Earth System Science Data (Online)},
issn = {1866-3516},
number = 4,
volume = 10,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 220 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A synthesis of carbon dioxide emissions from fossil-fuel combustion
journal, January 2012


A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission
journal, January 2014

  • Andres, Robert J.; Boden, Thomas A.; Higdon, David
  • Tellus B: Chemical and Physical Meteorology, Vol. 66, Issue 1
  • DOI: 10.3402/tellusb.v66.23616

Global CO 2 emissions from cement production
journal, January 2018


A Multi-Region Input–Output Table Based on the Global Trade Analysis Project Database (Gtap-Mrio)
journal, March 2013


Atmospheric Lifetime of Fossil Fuel Carbon Dioxide
journal, May 2009


Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed
journal, January 2017

  • Arneth, A.; Sitch, S.; Pongratz, J.
  • Nature Geoscience, Vol. 10, Issue 2
  • DOI: 10.1038/ngeo2882

The Effect of Terrestrial Photosynthesis Down Regulation on the Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model
journal, November 2009

  • Arora, V. K.; Boer, G. J.; Christian, J. R.
  • Journal of Climate, Vol. 22, Issue 22
  • DOI: 10.1175/2009JCLI3037.1

Globalizing results from ocean in situ iron fertilization studies: GLOBALIZING IRON FERTILIZATION
journal, June 2006


An integrated pan-tropical biomass map using multiple reference datasets
journal, January 2016

  • Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B. M.
  • Global Change Biology, Vol. 22, Issue 4
  • DOI: 10.1111/gcb.13139

Tropical forests are a net carbon source based on aboveground measurements of gain and loss
journal, September 2017


A multi-decade record of high-quality f CO 2 data in version 3 of the Surface Ocean CO 2 Atlas (SOCAT)
journal, January 2016

  • Bakker, Dorothee C. E.; Pfeil, Benjamin; Landa, Camilla S.
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-383-2016

Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
journal, August 2012

  • Ballantyne, A. P.; Alden, C. B.; Miller, J. B.
  • Nature, Vol. 488, Issue 7409
  • DOI: 10.1038/nature11299

Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
journal, January 2015

  • Ballantyne, A. P.; Andres, R.; Houghton, R.
  • Biogeosciences, Vol. 12, Issue 8, p. 2565-2584
  • DOI: 10.5194/bg-12-2565-2015

The changing carbon cycle of the coastal ocean
journal, December 2013

  • Bauer, James E.; Cai, Wei-Jun; Raymond, Peter A.
  • Nature, Vol. 504, Issue 7478
  • DOI: 10.1038/nature12857

El Niño and a record CO2 rise
journal, June 2016

  • Betts, Richard A.; Jones, Chris D.; Knight, Jeff R.
  • Nature Climate Change, Vol. 6, Issue 9
  • DOI: 10.1038/nclimate3063

Terrestrial carbon storage during the past 200 years: A Monte Carlo Analysis of CO 2 data from ice core and atmospheric measurements
journal, March 1997

  • Bruno, Michele; Joos, Fortunat
  • Global Biogeochemical Cycles, Vol. 11, Issue 1
  • DOI: 10.1029/96GB03611

Biogeochemical fluxes through microzooplankton: GLOBAL MICROZOOPLANKTON BIOGEOCHEMISTRY
journal, November 2010

  • Buitenhuis, Erik T.; Rivkin, Richard B.; Sailley, Sévrine
  • Global Biogeochemical Cycles, Vol. 24, Issue 4
  • DOI: 10.1029/2009GB003601

Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks
journal, October 2007

  • Canadell, J. G.; Le Quere, C.; Raupach, M. R.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 47
  • DOI: 10.1073/pnas.0702737104

The Holt-Winters Forecasting Procedure
journal, January 1978


Inferring CO 2 sources and sinks from satellite observations: Method and application to TOVS data
journal, January 2005

  • Chevallier, F.; Fisher, M.; Peylin, P.
  • Journal of Geophysical Research, Vol. 110, Issue D24
  • DOI: 10.1029/2005JD006390

The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
journal, January 2011

  • Clark, D. B.; Mercado, L. M.; Sitch, S.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-701-2011

The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation
journal, November 2018

  • Collier, Nathan; Hoffman, Forrest M.; Lawrence, David M.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 11
  • DOI: 10.1029/2018MS001354

Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability
journal, February 2013

  • Cox, Peter M.; Pearson, David; Booth, Ben B.
  • Nature, Vol. 494, Issue 7437
  • DOI: 10.1038/nature11882

Consumption-based accounting of CO2 emissions
journal, March 2010

  • Davis, S. J.; Caldeira, K.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 12
  • DOI: 10.1073/pnas.0906974107

An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest
journal, February 2011


The oceanic anthropogenic CO 2 sink: Storage, air-sea fluxes, and transports over the industrial era
journal, July 2014


Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning
journal, February 2017

  • DeVries, Tim; Holzer, Mark; Primeau, Francois
  • Nature, Vol. 542, Issue 7640
  • DOI: 10.1038/nature21068

Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust
journal, April 2009

  • Doney, Scott C.; Lima, Ivan; Feely, Richard A.
  • Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 56, Issue 8-10
  • DOI: 10.1016/j.dsr2.2008.12.006

Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean
journal, May 2008


Eddy compensation and controls of the enhanced sea-to-air CO 2 flux during positive phases of the Southern Annular Mode : CO
journal, September 2013

  • Dufour, Carolina O.; Sommer, Julien Le; Gehlen, Marion
  • Global Biogeochemical Cycles, Vol. 27, Issue 3
  • DOI: 10.1002/gbc.20090

Economic value of improved quantification in global sources and sinks of carbon dioxide
journal, May 2011

  • Durant, A. J.; Le Quéré, C.; Hope, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1943
  • DOI: 10.1098/rsta.2011.0002

Bias in the attribution of forest carbon sinks
journal, September 2013

  • Erb, Karl-Heinz; Kastner, Thomas; Luyssaert, Sebastiaan
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate2004

Natural and anthropogenic changes in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and firn
journal, February 1996

  • Etheridge, D. M.; Steele, L. P.; Langenfelds, R. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D2
  • DOI: 10.1029/95JD03410

Emissions are still rising: ramp up the cuts
journal, December 2018


Reply to 'Anthropogenic CO2 emissions'
journal, June 2013

  • Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel
  • Nature Climate Change, Vol. 3, Issue 7
  • DOI: 10.1038/nclimate1925

Update on CO2 emissions
journal, November 2010

  • Friedlingstein, P.; Houghton, R. A.; Marland, G.
  • Nature Geoscience, Vol. 3, Issue 12
  • DOI: 10.1038/ngeo1022

Persistent growth of CO2 emissions and implications for reaching climate targets
journal, September 2014

  • Friedlingstein, P.; Andrew, R. M.; Rogelj, J.
  • Nature Geoscience, Vol. 7, Issue 10
  • DOI: 10.1038/ngeo2248

The compact Earth system model OSCAR v2.2: description and first results
journal, January 2017

  • Gasser, Thomas; Ciais, Philippe; Boucher, Olivier
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-271-2017

The collection 6 MODIS active fire detection algorithm and fire products
journal, June 2016

  • Giglio, Louis; Schroeder, Wilfrid; Justice, Christopher O.
  • Remote Sensing of Environment, Vol. 178
  • DOI: 10.1016/j.rse.2016.02.054

Amplifying effects of land-use change on future atmospheric CO 2 levels : AMPLIFYING LAND-USE EFFECTS ON ATMOSPHERIC CO
journal, March 2003

  • Gitz, Vincent; Ciais, Philippe
  • Global Biogeochemical Cycles, Vol. 17, Issue 1
  • DOI: 10.1029/2002GB001963

A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
journal, January 2017

  • Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne
  • Geoscientific Model Development, Vol. 10, Issue 10
  • DOI: 10.5194/gmd-10-3745-2017

China: Emissions pattern of the world leader in CO 2 emissions from fossil fuel consumption and cement production
journal, January 2008

  • Gregg, Jay S.; Andres, Robert J.; Marland, Gregg
  • Geophysical Research Letters, Vol. 35, Issue 8
  • DOI: 10.1029/2007GL032887

Relevance of methodological choices for accounting of land use change carbon fluxes
journal, August 2015

  • Hansis, Eberhard; Davis, Steven J.; Pongratz, Julia
  • Global Biogeochemical Cycles, Vol. 29, Issue 8
  • DOI: 10.1002/2014GB004997

Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO 2 removal experiment
journal, February 2016


Carbon Footprint of Nations: A Global, Trade-Linked Analysis
journal, August 2009

  • Hertwich, Edgar G.; Peters, Glen P.
  • Environmental Science & Technology, Vol. 43, Issue 16
  • DOI: 10.1021/es803496a

Current and future CO 2 emissions from drained peatlands in Southeast Asia
journal, January 2010


Global and regional fluxes of carbon from land use and land cover change 1850-2015: Carbon Emissions From Land Use
journal, March 2017

  • Houghton, R. A.; Nassikas, Alexander A.
  • Global Biogeochemical Cycles, Vol. 31, Issue 3
  • DOI: 10.1002/2016GB005546

Carbon emissions from land use and land-cover change
journal, January 2012


An intercomparison of inverse models for estimating sources and sinks of CO 2 using GOSAT measurements : GOSAT INVERSION INTER-COMPARISON
journal, May 2015

  • Houweling, S.; Baker, D.; Basu, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 10
  • DOI: 10.1002/2014JD022962

A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
journal, January 2013

  • Hugelius, G.; Bockheim, J. G.; Camill, P.
  • Earth System Science Data, Vol. 5, Issue 2
  • DOI: 10.5194/essd-5-393-2013

Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions
journal, July 2017


Reaching peak emissions
journal, December 2015

  • Jackson, Robert B.; Canadell, Josep G.; Le Quéré, Corinne
  • Nature Climate Change, Vol. 6, Issue 1
  • DOI: 10.1038/nclimate2892

Global energy growth is outpacing decarbonization
journal, December 2018

  • Jackson, R. B.; Le Quéré, C.; Andrew, R. M.
  • Environmental Research Letters, Vol. 13, Issue 12
  • DOI: 10.1088/1748-9326/aaf303

Improving the ISBA CC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest
journal, January 2015

  • Joetzjer, E.; Delire, C.; Douville, H.
  • Geoscientific Model Development, Vol. 8, Issue 6
  • DOI: 10.5194/gmd-8-1709-2015

Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years
journal, February 2008

  • Joos, F.; Spahni, R.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 5
  • DOI: 10.1073/pnas.0707386105

Recent decline in the global land evapotranspiration trend due to limited moisture supply
journal, October 2010

  • Jung, Martin; Reichstein, Markus; Ciais, Philippe
  • Nature, Vol. 467, Issue 7318
  • DOI: 10.1038/nature09396

Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model
journal, March 2013


Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii
journal, December 1976


Reconstruction of the history of anthropogenic CO2 concentrations in the ocean
journal, November 2009


Global ocean storage of anthropogenic carbon
journal, January 2013


Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Anthropogenic land use estimates for the Holocene – HYDE 3.2
journal, January 2017

  • Klein Goldewijk, Kees; Beusen, Arthur; Doelman, Jonathan
  • Earth System Science Data, Vol. 9, Issue 2
  • DOI: 10.5194/essd-9-927-2017

Per-capita estimations of long-term historical land use and the consequences for global change research
journal, July 2017


The JRA-55 Reanalysis: General Specifications and Basic Characteristics
journal, January 2015

  • Kobayashi, Shinya; Ota, Yukinari; Harada, Yayoi
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 93, Issue 1
  • DOI: 10.2151/jmsj.2015-001

Uncertainties around reductions in China’s coal use and CO2 emissions
journal, March 2016

  • Korsbakken, Jan Ivar; Peters, Glen P.; Andrew, Robbie M.
  • Nature Climate Change, Vol. 6, Issue 7
  • DOI: 10.1038/nclimate2963

A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Recent variability of the global ocean carbon sink
journal, September 2014

  • Landschützer, P.; Gruber, N.; Bakker, D. C. E.
  • Global Biogeochemical Cycles, Vol. 28, Issue 9
  • DOI: 10.1002/2014GB004853

The reinvigoration of the Southern Ocean carbon sink
journal, September 2015

  • Landschützer, Peter; Gruber, Nicolas; Haumann, F. Alexander
  • Science, Vol. 349, Issue 6253
  • DOI: 10.1126/science.aab2620

Decadal variations and trends of the global ocean carbon sink
journal, October 2016

  • Landschützer, Peter; Gruber, Nicolas; Bakker, Dorothee C. E.
  • Global Biogeochemical Cycles, Vol. 30, Issue 10, p. 1396-1417
  • DOI: 10.1002/2015GB005359

Trends in the sources and sinks of carbon dioxide
journal, November 2009

  • Le Quéré, Corinne; Raupach, Michael R.; Canadell, Josep G.
  • Nature Geoscience, Vol. 2, Issue 12
  • DOI: 10.1038/ngeo689

The global carbon budget 1959–2011
journal, January 2013


Global carbon budget 2013
journal, January 2014

  • Le Quéré, C.; Peters, G. P.; Andres, R. J.
  • Earth System Science Data, Vol. 6, Issue 1
  • DOI: 10.5194/essd-6-235-2014

Global Carbon Budget 2015
journal, January 2015

  • Le Quéré, C.; Moriarty, R.; Andrew, R. M.
  • Earth System Science Data, Vol. 7, Issue 2
  • DOI: 10.5194/essd-7-349-2015

Global carbon budget 2014
journal, January 2015

  • Le Quéré, C.; Moriarty, R.; Andrew, R. M.
  • Earth System Science Data, Vol. 7, Issue 1
  • DOI: 10.5194/essd-7-47-2015

Global Carbon Budget 2016
journal, January 2016

  • Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-605-2016

Global Carbon Budget 2017
journal, January 2018

  • Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-405-2018

Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability
journal, January 2018

  • Li, Hongmei; Ilyina, Tatiana
  • Geophysical Research Letters, Vol. 45, Issue 2
  • DOI: 10.1002/2017GL075370

Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations
journal, January 2017

  • Li, Wei; Ciais, Philippe; Peng, Shushi
  • Biogeosciences, Vol. 14, Issue 22, p. 5053-5067
  • DOI: 10.5194/bg-14-5053-2017

A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions
journal, January 2018


Reduced carbon emission estimates from fossil fuel combustion and cement production in China
journal, August 2015


Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network
journal, January 2006


Monthly, global emissions of carbon dioxide from fossil fuel consumption
journal, January 2011


How Uncertain Are Estimates of CO2 Emissions?
journal, January 2009


Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record
journal, January 1995

  • Masarie, Kenneth A.; Tans, Pieter P.
  • Journal of Geophysical Research, Vol. 100, Issue D6
  • DOI: 10.1029/95JD00859

Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO 2
journal, April 2019

  • Mauritsen, Thorsten; Bader, Jürgen; Becker, Tobias
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 4
  • DOI: 10.1029/2018MS001400

Timescales for detection of trends in the ocean carbon sink
journal, February 2016

  • McKinley, Galen A.; Pilcher, Darren J.; Fay, Amanda R.
  • Nature, Vol. 530, Issue 7591
  • DOI: 10.1038/nature16958

Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set
journal, January 2003


Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change
journal, September 2015

  • Meiyappan, Prasanth; Jain, Atul K.; House, Joanna I.
  • Global Biogeochemical Cycles, Vol. 29, Issue 9, p. 1524-1548
  • DOI: 10.1002/2015GB005086

Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
journal, January 2016


Impact of changes in diffuse radiation on the global land carbon sink
journal, April 2009

  • Mercado, Lina M.; Bellouin, Nicolas; Sitch, Stephen
  • Nature, Vol. 458, Issue 7241
  • DOI: 10.1038/nature07949

Inverse estimates of anthropogenic CO 2 uptake, transport, and storage by the ocean : AIR-SEA EXCHANGE OF ANTHROPOGENIC CARBON
journal, April 2006

  • Mikaloff Fletcher, S. E.; Gruber, N.; Jacobson, A. R.
  • Global Biogeochemical Cycles, Vol. 20, Issue 2
  • DOI: 10.1029/2005GB002530

Emission budgets and pathways consistent with limiting warming to 1.5 °C
journal, September 2017

  • Millar, Richard J.; Fuglestvedt, Jan S.; Friedlingstein, Pierre
  • Nature Geoscience, Vol. 10, Issue 10
  • DOI: 10.1038/ngeo3031

A fast method for updating global fossil fuel carbon dioxide emissions
journal, July 2009


Estimation of global leaf area index and absorbed par using radiative transfer models
journal, January 1997

  • Myneni, R. B.; Ramakrishna, R.; Nemani, R.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, Issue 6
  • DOI: 10.1109/36.649788

Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM)
journal, January 2018

  • Patra, Prabir K.; Takigawa, Masayuki; Watanabe, Shingo
  • SOLA, Vol. 14, Issue 0
  • DOI: 10.2151/sola.2018-016

Constructing an Environmentally-Extended Multi-Regional Input–Output Table Using the gtap Database
journal, June 2011


Growth in emission transfers via international trade from 1990 to 2008
journal, April 2011

  • Peters, G. P.; Minx, J. C.; Weber, C. L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 21
  • DOI: 10.1073/pnas.1006388108

A synthesis of carbon in international trade
journal, January 2012

  • Peters, G. P.; Davis, S. J.; Andrew, R.
  • Biogeosciences, Vol. 9, Issue 8, p. 3247-3276
  • DOI: 10.5194/bg-9-3247-2012

Rapid growth in CO2 emissions after the 2008–2009 global financial crisis
journal, December 2011

  • Peters, Glen P.; Marland, Gregg; Le Quéré, Corinne
  • Nature Climate Change, Vol. 2, Issue 1
  • DOI: 10.1038/nclimate1332

The challenge to keep global warming below 2 °C
journal, December 2012

  • Peters, Glen P.; Andrew, Robbie M.; Boden, Tom
  • Nature Climate Change, Vol. 3, Issue 1
  • DOI: 10.1038/nclimate1783

Towards real-time verification of CO2 emissions
journal, November 2017

  • Peters, Glen P.; Le Quéré, Corinne; Andrew, Robbie M.
  • Nature Climate Change, Vol. 7, Issue 12
  • DOI: 10.1038/s41558-017-0013-9

Global atmospheric carbon budget: results from an ensemble of atmospheric CO 2 inversions
journal, January 2013


A uniform, quality controlled Surface Ocean CO 2 Atlas (SOCAT)
journal, January 2013


Lower land-use emissions responsible for increased net land carbon sink during the slow warming period
journal, August 2018


Terminology as a key uncertainty in net land use and land cover change carbon flux estimates
journal, January 2014

  • Pongratz, J.; Reick, C. H.; Houghton, R. A.
  • Earth System Dynamics, Vol. 5, Issue 1
  • DOI: 10.5194/esd-5-177-2014

Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction
journal, January 2011


Global and regional drivers of accelerating CO2 emissions
journal, May 2007

  • Raupach, M. R.; Marland, G.; Ciais, P.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 24
  • DOI: 10.1073/pnas.0700609104

Anthropogenic perturbation of the carbon fluxes from land to ocean
journal, June 2013

  • Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 8
  • DOI: 10.1038/ngeo1830

Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport
journal, June 2018


CO<sub>2</sub> flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport
journal, January 2003

  • Rödenbeck, C.; Houweling, S.; Gloor, M.
  • Atmospheric Chemistry and Physics, Vol. 3, Issue 6
  • DOI: 10.5194/acp-3-1919-2003

Global surface-ocean p CO 2 and sea–air CO 2 flux variability from an observation-driven ocean mixed-layer scheme
journal, January 2013

  • Rödenbeck, C.; Keeling, R. F.; Bakker, D. C. E.
  • Ocean Science, Vol. 9, Issue 2
  • DOI: 10.5194/os-9-193-2013

Interannual sea–air CO 2 flux variability from an observation-driven ocean mixed-layer scheme
journal, January 2014


Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean p CO 2 Mapping intercomparison (SOCOM)
journal, January 2015


Differences between carbon budget estimates unravelled
journal, February 2016

  • Rogelj, Joeri; Schaeffer, Michiel; Friedlingstein, Pierre
  • Nature Climate Change, Vol. 6, Issue 3
  • DOI: 10.1038/nclimate2868

Benchmark map of forest carbon stocks in tropical regions across three continents
journal, May 2011

  • Saatchi, S. S.; Harris, N. L.; Brown, S.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 24
  • DOI: 10.1073/pnas.1019576108

Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion
dataset, May 2017


The global methane budget 2000–2012
journal, January 2016

  • Saunois, Marielle; Bousquet, Philippe; Poulter, Ben
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-697-2016

Effect of increasing CO 2 on the terrestrial carbon cycle
journal, December 2014

  • Schimel, David; Stephens, Britton B.; Fisher, Joshua B.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 2
  • DOI: 10.1073/pnas.1407302112

Upward revision of global fossil fuel methane emissions based on isotope database
journal, October 2016

  • Schwietzke, Stefan; Sherwood, Owen A.; Bruhwiler, Lori M. P.
  • Nature, Vol. 538, Issue 7623
  • DOI: 10.1038/nature19797

Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)
journal, January 2016

  • Schwinger, Jörg; Goris, Nadine; Tjiputra, Jerry F.
  • Geoscientific Model Development, Vol. 9, Issue 8
  • DOI: 10.5194/gmd-9-2589-2016

Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model
journal, January 2014


Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2
journal, June 2007


Wind-driven changes in the ocean carbon sink
journal, January 2014


Corrigendum to “Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans” [Deep Sea Res. II 56 (2009) 554–577]
journal, November 2009

  • Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik
  • Deep Sea Research Part I: Oceanographic Research Papers, Vol. 56, Issue 11
  • DOI: 10.1016/j.dsr.2009.07.007

North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget
journal, March 2014


Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
journal, January 2013

  • Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.
  • Biogeosciences, Vol. 10, Issue 3
  • DOI: 10.5194/bg-10-1717-2013

The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015
journal, January 2017

  • van der Laan-Luijkx, Ingrid T.; van der Velde, Ivar R.; van der Veen, Emma
  • Geoscientific Model Development, Vol. 10, Issue 7
  • DOI: 10.5194/gmd-10-2785-2017

Terrestrial cycling of 13 CO 2 by photosynthesis, respiration, and biomass burning in SiBCASA
journal, January 2014


Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

Global fire emissions estimates during 1997–2016
journal, January 2017

  • van der Werf, Guido R.; Randerson, James T.; Giglio, Louis
  • Earth System Science Data, Vol. 9, Issue 2
  • DOI: 10.5194/essd-9-697-2017

The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate ( V cmax ) on global gross primary production
journal, June 2017

  • Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.
  • New Phytologist, Vol. 215, Issue 4
  • DOI: 10.1111/nph.14623

Global ocean carbon uptake: magnitude, variability and trends
journal, January 2013


Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2
journal, September 2016

  • Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika
  • Nature, Vol. 538, Issue 7626
  • DOI: 10.1038/nature19772

Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM
journal, January 2014


Substantial global carbon uptake by cement carbonation
journal, November 2016

  • Xi, Fengming; Davis, Steven J.; Ciais, Philippe
  • Nature Geoscience, Vol. 9, Issue 12
  • DOI: 10.1038/ngeo2840

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions
journal, July 2011

  • Zaehle, Sönke; Ciais, Philippe; Friend, Andrew D.
  • Nature Geoscience, Vol. 4, Issue 9
  • DOI: 10.1038/ngeo1207

Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations
journal, January 2017

  • Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio
  • Biogeosciences, Vol. 14, Issue 15
  • DOI: 10.5194/bg-14-3685-2017

    Works referencing / citing this record:

    Impact of Nonzero Intercept Gas Transfer Velocity Parameterizations on Global and Regional Ocean–Atmosphere CO2 Fluxes
    journal, May 2019


    A generalized approach for selecting solar energy system configurations for a wide range of applications
    journal, January 2019

    • Doron, Pinchas; Karni, Jacob; Slocum, Alexander
    • MRS Energy & Sustainability, Vol. 6
    • DOI: 10.1557/mre.2019.10

    Emission of trace gases and aerosols from biomass burning – an updated assessment
    journal, January 2019


    Wintertime f CO 2 Variability in the Subpolar North Atlantic Since 2004
    journal, February 2019

    • Fröb, F.; Olsen, A.; Becker, M.
    • Geophysical Research Letters, Vol. 46, Issue 3
    • DOI: 10.1029/2018gl080554

    Intergenerational effects of CO 2 ‐induced stream acidification in the Trinidadian guppy ( Poecilia reticulata )
    journal, October 2019

    • George, Hartley C. P. H.; Miles, George; Bemrose, James
    • Ecology and Evolution, Vol. 9, Issue 22
    • DOI: 10.1002/ece3.5761

    Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget
    journal, July 2019

    • McMullin, Barry; Price, Paul; Jones, Michael B.
    • Mitigation and Adaptation Strategies for Global Change
    • DOI: 10.1007/s11027-019-09881-6

    Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future
    journal, May 2019

    • Bushinsky, Seth M.; Takeshita, Yuichiro; Williams, Nancy L.
    • Current Climate Change Reports, Vol. 5, Issue 3
    • DOI: 10.1007/s40641-019-00129-8

    Power sector asset stranding effects of climate policies
    journal, April 2019

    • Saygin, Deger; Rigter, Jasper; Caldecott, Ben
    • Energy Sources, Part B: Economics, Planning, and Policy, Vol. 14, Issue 4
    • DOI: 10.1080/15567249.2019.1618421

    Polyoxometalate-Based Catalysts for CO2 Conversion
    journal, May 2019


    Global carbon budgets estimated from atmospheric O 2 ∕N 2 and CO 2 observations in the western Pacific region over a 15-year period
    journal, January 2019

    • Tohjima, Yasunori; Mukai, Hitoshi; Machida, Toshinobu
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
    • DOI: 10.5194/acp-19-9269-2019

    Continuous atmospheric CO<sub>2</sub>, CH<sub>4</sub> and CO measurements at the Observatoire Pérenne de l'Environnement (OPE) station in France from 2011 to 2018
    journal, January 2019

    • Conil, Sébastien; Helle, Julie; Langrene, Laurent
    • Atmospheric Measurement Techniques, Vol. 12, Issue 12
    • DOI: 10.5194/amt-12-6361-2019

    Intergenerational effects of CO 2 ‐induced stream acidification in the Trinidadian guppy ( Poecilia reticulata )
    journal, October 2019

    • George, Hartley C. P. H.; Miles, George; Bemrose, James
    • Ecology and Evolution, Vol. 9, Issue 22
    • DOI: 10.1002/ece3.5761

    Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget
    journal, July 2019

    • McMullin, Barry; Price, Paul; Jones, Michael B.
    • Mitigation and Adaptation Strategies for Global Change
    • DOI: 10.1007/s11027-019-09881-6

    Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future
    journal, May 2019

    • Bushinsky, Seth M.; Takeshita, Yuichiro; Williams, Nancy L.
    • Current Climate Change Reports, Vol. 5, Issue 3
    • DOI: 10.1007/s40641-019-00129-8

    Wintertime f CO 2 Variability in the Subpolar North Atlantic Since 2004
    journal, February 2019

    • Fröb, F.; Olsen, A.; Becker, M.
    • Geophysical Research Letters, Vol. 46, Issue 3
    • DOI: 10.1029/2018gl080554

    Depth‐Resolved Photochemical Lability of Dissolved Organic Matter in the Western Tropical Pacific Ocean
    journal, March 2020

    • Yang, Fangming; Song, Guisheng; Massicotte, Philippe
    • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 3
    • DOI: 10.1029/2019jg005425

    The fate of carbon in a mature forest under carbon dioxide enrichment
    journal, April 2020


    Power sector asset stranding effects of climate policies
    journal, April 2019

    • Saygin, Deger; Rigter, Jasper; Caldecott, Ben
    • Energy Sources, Part B: Economics, Planning, and Policy, Vol. 14, Issue 4
    • DOI: 10.1080/15567249.2019.1618421

    Economic Dimension of the Climate Challenge to Russia’s Sustainable Development
    journal, March 2019


    A generalized approach for selecting solar energy system configurations for a wide range of applications
    journal, January 2019

    • Doron, Pinchas; Karni, Jacob; Slocum, Alexander
    • MRS Energy & Sustainability, Vol. 6
    • DOI: 10.1557/mre.2019.10

    A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements
    journal, July 2019

    • Wanninkhof, Rik; Pickers, Penelope A.; Omar, Abdirahman M.
    • Frontiers in Marine Science, Vol. 6
    • DOI: 10.3389/fmars.2019.00400

    Impact of Nonzero Intercept Gas Transfer Velocity Parameterizations on Global and Regional Ocean–Atmosphere CO2 Fluxes
    journal, May 2019


    Polyoxometalate-Based Catalysts for CO2 Conversion
    journal, May 2019


    Emission of trace gases and aerosols from biomass burning – an updated assessment
    journal, January 2019


    Global carbon budgets estimated from atmospheric O 2 ∕N 2 and CO 2 observations in the western Pacific region over a 15-year period
    journal, January 2019

    • Tohjima, Yasunori; Mukai, Hitoshi; Machida, Toshinobu
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
    • DOI: 10.5194/acp-19-9269-2019

    Continuous atmospheric CO<sub>2</sub>, CH<sub>4</sub> and CO measurements at the Observatoire Pérenne de l'Environnement (OPE) station in France from 2011 to 2018
    journal, January 2019

    • Conil, Sébastien; Helle, Julie; Langrene, Laurent
    • Atmospheric Measurement Techniques, Vol. 12, Issue 12
    • DOI: 10.5194/amt-12-6361-2019

    Spatiotemporal reconstructions of global CO 2 ‐fluxes using Gaussian Markov random fields
    journal, December 2019

    • Dahlén, Unn; Lindström, Johan; Scholze, Marko
    • Environmetrics, Vol. 31, Issue 4
    • DOI: 10.1002/env.2610

    Constraints on Earth System Functioning at the Paleocene‐Eocene Thermal Maximum From the Marine Silicon Cycle
    journal, May 2020

    • Fontorbe, Guillaume; Frings, Patrick J.; De La Rocha, Christina L.
    • Paleoceanography and Paleoclimatology, Vol. 35, Issue 5
    • DOI: 10.1029/2020pa003873

    Ocean carbonate system variability in the North Atlantic Subpolar surface water (1993–2017)
    journal, January 2020

    • Leseurre, Coraline; Lo Monaco, Claire; Reverdin, Gilles
    • Biogeosciences, Vol. 17, Issue 9
    • DOI: 10.5194/bg-17-2553-2020