Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics
Smoothed particle hydrodynamics (SPH) models were used to simulate unsaturated flow in fractures with complex geometries. SPH is a fully Lagrangian particle-based method that allows the dynamics of interfaces separating fluids to be modeled without employing complex front tracking schemes. In SPH simulations, the fluid density field is represented by a superposition of weighting functions centered on particles which represent the fluids. The pressure is related to the fluid density through an equation of state, and the particles move in response to the pressure gradient. SPH does not require the construction of grids that would otherwise introduce numerical dispersion. The model can be used to simulate complex free-surface flow phenomenon such as invasion of wetting and nonwetting fluids into three-dimensional fractures. These processes are a severe challenge for grid-based methods. Surface tension was simulated by using a van der Waals equation of state and a combination of short-range repulsive and longer-range attractive interactions between fluid particles. The wetting behavior was simulated using similar interactions between mobile fluid particles and stationary boundary particles. The fracture geometry was generated from self-affine fractal surfaces. The fractal model was based on a large body of experimental work, which indicates that fracture surfaces have a self-affine fractal geometry characterized by a material independent (quasi universal) Hurst exponent of about 0.75.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 15020818
- Report Number(s):
- PNNL-SA-44311
- Journal Information:
- Vadose Zone Journal, 4(3):848-855, Journal Name: Vadose Zone Journal, 4(3):848-855 Journal Issue: 3 Vol. 4
- Country of Publication:
- United States
- Language:
- English
Similar Records
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability