Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments

Journal Article · · Chemosphere

A conceptual model and numerical simulations of bacterial U(VI) reduction in fractured subsurface sediments were developed to assess the potential feasibility of biomineralization at the fracture/matrix interface as a mechanism for immobilization of uranium in structured subsurface media. The model envisions flow of anaerobic groundwater, with or without acetate as an electron donor for stimulation of U(VI) reduction by dissimilatory metal-reducing bacteria (DMRB), within mobile macropores along a one-dimensional flow path. As the groundwater moves along the flow path, U(VI) trapped in the immobile mesopore and micropore domains (the sediment matrix) becomes desorbed and transferred to the mobile macropores (fractures) via a first-order exchange mechanism. By allowing bacterial U(VI) reduction to occur in the mesopore domain (assumed to account for 12% of total sediment pore volume) according to experimentally-determined kinetic parameters and an assumed DMRB abundance of 107 cells per cm3 bulk sediment (equivalent to 4 mg of cells per dm3 bulk sediment), the concentration of U(VI) in the macropore domain was reduced ca. la-fold compared to that predicted in the absence of mesopore DMRB activity after a 6-month simulation period. The results suggest that input of soluble electron donors over a period of years could lead to a major redistribution of uranium in fractured subsurface sediments, converting potentially mobile sorbed U(VI) to an insoluble reduced phase (i.e. uraninite) in the mesopore domain that is expected to be permanently immobile under sustained anaerobic conditions.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15020657
Report Number(s):
PNNL-SA-45141; KP1301010
Journal Information:
Chemosphere, Journal Name: Chemosphere Journal Issue: 5 Vol. 59
Country of Publication:
United States
Language:
English