Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock

Technical Report ·
DOI:https://doi.org/10.2172/15016331· OSTI ID:15016331

The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when perturbations on an interface separating gases with different properties grow following the passage of a shock. This instability is typically studied in shock tube experiments, and constitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations and models for the instability growth and evolution have also been used to further elucidate the physics of the Richtmyer-Meshkov instability. In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme (as implemented in the HOPE code [68]) is applied to simulate the single-mode Richtmyer-Meshkov instability with reshock in two spatial dimensions. The initial conditions and computational domain for the simulations are modeled after the Collins and Jacobs [29] single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment. The following boundary conditions are used: (1) periodic in the spanwise direction corresponding to the cross section of the test section; (2) outflow at the entrance of the test section in the streamwise direction, and; (3) reflecting at the end wall of the test section in the streamwise direction. The present investigation has three principal motivations: (1) to provide additional validation of the HOPE code against available experimental data; (2) to provide numerical simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with reshock, and; (3) to systematically investigate the dependence of mixing properties on both the order of WENO reconstruction and on the spatial resolution. The present study constitutes the first comprehensive application of the high-resolution WENO method to the Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing.

Research Organization:
Lawrence Livermore National Lab., Livermore, CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15016331
Report Number(s):
UCRL-TR-212120
Country of Publication:
United States
Language:
English

Similar Records

Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock
Technical Report · Wed Oct 06 00:00:00 EDT 2004 · OSTI ID:15014825

Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
Journal Article · Tue Dec 12 23:00:00 EST 2006 · Physical Review E, vol. 76, N/A, May 1, 2007, pp. 026319-1-026319-28 · OSTI ID:936958

High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions
Journal Article · Mon May 15 00:00:00 EDT 2006 · Physics of Fluids, vol. 19, N/A, May 1, 2007, pp. 024104-1-024104-19 · OSTI ID:936681