skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SIMULATION OF GEOMATERIALS USING CONTINUUM DAMAGE MODELS ON AN EULERIAN GRID

Conference ·
OSTI ID:15015130

A new continuum model for directional tensile failure has been developed that can simulate weakening and void formation due to directional tensile failure. The model is developed within the context of a properly invariant nonlinear thermomechanical theory. A second order damage tensor is introduced which allows simulation of weakening to tension applied in one direction, without weakening to subsequent tension applied in perpendicular directions. This damage tensor can be advected using standard methods in computer codes. Porosity is used as an isotropic measure of volumetric void strain and its evolution is influenced by tensile failure. The rate of dissipation due to directional tensile failure takes a particularly simple form, which can be analyzed easily. Specifically, the model can be combined with general constitutive equations for porous compaction and dilation, as well as viscoplasticity. A robust non-iterative numerical scheme for integrating these evolution equations is proposed. This constitutive model has been implemented into an Eulerian shock wave code with adaptive mesh refinement. A comparison of experimental results and computational simulations of spherical wave propagation in Danby marble was made. The experiment consisted of a 2-cm-diameter explosive charge detonated in the center of a cylindrical rock sample. Radial particle velocity histories were recorded at several concentric locations in the sample. An extensively damaged region near the charge cavity and two networks of cracks were evident in the specimen after the test. The first network consists of radial cracks emanating form the cavity and extending about halfway through the specimen. The second network consists of circumferential cracks occurring in a relatively narrow band that extends from the outer boundary of the radially cracked region toward the free surface. The calculations indicated load-induced anisotropy such as was observed in the experiment.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15015130
Report Number(s):
UCRL-CONF-206641; TRN: US200509%%39
Resource Relation:
Conference: Presented at: 11th International Conference on Fracture, Turin (IT), 03/20/2005--03/25/2005; Other Information: PBD: 17 Sep 2004
Country of Publication:
United States
Language:
English