Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Matrix Diffusion and Colloid-Facilitated Transport in Fractured Rocks: Model and Parameter Validation

Technical Report ·
DOI:https://doi.org/10.2172/15013603· OSTI ID:15013603
In this report, we review the results of Reimus et al. (2000a; 2000b) regarding matrix diffusion and colloid-facilitated transport in fractured rock and evaluate the implications of these results on modeling fracture flow at the Nevada Test Site (NTS). In particular, we examine these data in the context of the recent Cheshire hydrologic source term (HST) model results (Pawloski et al., 2001). This report is divided into several sections. In the first, we evaluate the effective diffusion coefficient (D{sub e}) data reported in Reimus et al. (2000a) for conservative tracer species ({sup 3}H, {sup 14}C, and {sup 99}Tc) and fit a simple effective diffusion model to these data. In the second, we use the fitted effective diffusion model, in conjunction with a surface complexation model, to simulate plutonium-colloid transport and compare model results to data reported in Reimus et al. (2000b). In the third, we evaluate the implications of these data with regards to radionuclide transport through fractures at the field scale and, in particular, with regards to the Cheshire HST model (Pawloski et al., 2001). Finally, we make recommendations regarding future radionuclide transport modeling efforts at the NTS.
Research Organization:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15013603
Report Number(s):
UCRL-ID-149817
Country of Publication:
United States
Language:
English