skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxidation of Met(144) and Met(145) in Calmodulin Blocks Calmodulin Dependent Activation of the Plasma Membrane Ca-ATPase.

Journal Article · · Biochemistry, 42(11):3231-3238
DOI:https://doi.org/10.1021/bi026956z· OSTI ID:15010507

Methionine oxidation in calmodulin (CaM) isolated from senescent brain results in an inability to fully activate the plasma membrane (PM) Ca-ATPase which may contribute to observed increases in cytosolic calcium levels under conditions of oxidative stress and biological aging. To identify the functional importance of the oxidation of Met-144 and Met-145 near the carboxyl-terminus of CaM, we have used site-directed mutagenesis to substitute leucines for methionines at other positions in CaM, permitting the site-specific oxidation of Met-144 and Met-145. Prior to the oxidation, the CaM-dependent activation of the PM-CA-ATPase by these CaM mutants is similar to that of wild-type CaM. Likewise, oxidation of individual methionines has a minimal effect on the CaM concentration necessary for half-maximal activation of the PM-Ca-ATPase. These results are consistent with previous suggestions that no single methionine within CaM is essential for activation of the PM-CA-ATPase. Oxidation of either Met-144 or Met-145 or all nine methionines in CaM results in an equivalent inhibition of the PM-Ca-ATPase, resulting in a 50-60% reduction in the level of enzyme activation. Oxidation of Met-144 is largely responsible for the decreased extent of enzyme activation, suggesting that this site is critical in modulating the sensitivity of CaM to oxidant-induced loss-of-function. These results are discussed in terms of a possible functional role for Met-144 and Met-145 in CaM as redox sensors that function to modulate calcium homeostasis and energy metabolism in response to conditions of oxidative stress.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15010507
Report Number(s):
PNWD-SA-6094
Journal Information:
Biochemistry, 42(11):3231-3238, Journal Name: Biochemistry, 42(11):3231-3238
Country of Publication:
United States
Language:
English