Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Gas Pressure Forming of Titanium Alloys and Composites by Transformation Superplasticity

Conference ·
OSTI ID:15005684
By thermally cycling through their transformation temperature range, coarse-grained, polymorphic materials can be deformed superplastically, owing to the emergence of transformation mismatch plasticity (or transformation superplasticity) as a deformation mechanism. This mechanism is investigated under biaxial stress conditions during thermal cycling of unalloyed titanium, Ti-6Al-4V, and their composites (Ti/10 vol.% TiC{sub p}, Ti-6Al-4V/10 vol% TiC{sub p} and Ti-6Al-4V/5 vol.% TiB{sub w}). During gas-pressure dome bulging experiments, the dome height was measured as a function of forming time. Adapting existing models of biaxial doming to the case of transformation superplasticity where the strain-rate sensitivity is unity, we verify the operation of this deformation mechanism in all experimental materials, and compare the biaxial results to uniaxial thermal cycling results on the same materials. Finally, existing thickness distribution models are compared with experimentally measured profiles.
Research Organization:
Lawrence Livermore National Lab., CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15005684
Report Number(s):
UCRL-JC-146024
Country of Publication:
United States
Language:
English