Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Superconducting High-Resolution X-Ray Spectrometers for Chemical State Analysis of Dilute Samples

Conference ·
DOI:https://doi.org/10.1063/1.1757962· OSTI ID:15005013
Cryogenic X-ray spectrometers operating at temperatures below 1 K combine high energy resolution with broadband efficiency for X-ray energies up to 10 keV. They offer advantages for chemical state analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional Ge or Si(Li) detectors lack energy resolution and grating spectrometers lack detection efficiency. We are developing soft X-ray spectrometers based on superconducting Nb-Al-AlOx-Al-Nb tunnel junction (STJ) technology. X-rays absorbed in one of the superconducting electrodes generate excess charge carriers in proportion to their energy, thereby producing a measurable temporary increase in tunneling current. For STJ operation at the synchrotron, we have designed a two-stage adiabatic demagnetization refrigerator (ADR) with a cold finger that holds a 3 x 3 array of STJs inside the UHV sample chamber at a temperature of {approx}0.1 K within {approx}15 mm of a room temperature sample. Our STJ spectrometer can have an energy resolution below 10 eV FWHM for X-ray energies up to 1 keV, and has total count rate capabilities above 100,000 counts/s. We will describe detector performance in synchrotron-based X-ray fluorescence experiments and demonstrate its use for XAS on a dilute metal site in a metalloprotein.
Research Organization:
Lawrence Livermore National Lab., CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15005013
Report Number(s):
UCRL-JC-155314
Country of Publication:
United States
Language:
English