skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser Peening of Alloy 22 Welds

Technical Report ·
DOI:https://doi.org/10.2172/15004905· OSTI ID:15004905

Stress corrosion cracking (SCC) of near-surface Alloy 22 metal can be propagated by yield-point levels (45 ksi) of residual weld tensile stresses. This is a serious concern for welds in the Alloy 22 canister employed in the Yucca Mountain Project (YMP) Waste Package, particularly in closure welds that cannot be stress relieved by conventional heat treating. This work shows that compressive shock waves, driven into a weldment by laser peening, replaces its detrimental tensile stresses of 30-80 ksi with compressive stresses of 2-25 ksi or better that retard SCC. This benefit occurs in the top 1.5 mm (or more) of the material without appreciable heating. It was also found that quenching after solution annealing and shot peening during production of Alloy 22 plate imparts compressive stresses of 35-105 ksi near the surface, a very large buffer against SCC. This means that if seam-welded hollow canisters likewise gain compressive stresses upon post-weld annealing and quenching, and if closure welds are laser peened, all surfaces of the canister would be under compression, thereby precluding SCC of the Alloy 22 canister. Laser peening may plastically deform as much as the top 10% of the metal (about 2 mm out of the 25-mm plate thickness), thereby changing the rate of general corrosion of waste package outer barrier. Long-term corrosion tests of laser peened Alloy 22 welds should be conducted. Present results show that laser peening, currently under development at LLNL using high-energy lasers, induces compressive residual stress on the near surface of the weld. This laser peening process is showing significant retardation of SCC and should be further characterized and assessed to preclude SCC in Alloy 22 canisters.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15004905
Report Number(s):
UCRL-ID-149146; TRN: US0305202
Resource Relation:
Other Information: PBD: 3 Oct 2002
Country of Publication:
United States
Language:
English