Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fundamental Elements of Geologic C02 Sequestration in Saline Aquifers

Conference ·
OSTI ID:15002151
Geologic sequestration represents a promising strategy for isolating CO{sub 2} waste streams from the atmosphere. Successful implementation of this approach hinges on our ability to predict the relative effectiveness of subsurface CO{sub 2} migration and sequestration as a function of key target-formation and cap-rock properties, which will enable us to identify optimal sites and evaluate their long-term isolation performance. Quantifying this functional relationship requires a modeling capability that explicitly couples multiphase flow and kinetically controlled geochemical processes. We have developed a unique computational package that meets these criteria, and used it to model CO{sub 2} injection at Statoil's North-Sea Sleipner facility, the world's first saline-aquifer storage site. The package integrates a state-of-the-art reactive transport simulator (NUFT) with supporting geochemical software and databases (SUPCRT92). In our Sleipner study, we have quantified--for the first time--the influence of intra-aquifer shales and aquifer/cap-rock composition on migration/sequestration balance, sequestration partitioning among hydrodynamic, solubility, and mineral trapping mechanisms, and the isolation performance of shale cap rocks. Here, we review the fundamental elements of geologic CO{sub 2} sequestration in saline aquifers as revealed from model XSH of our Sleipner study; this model, unlike CSH and DSH, does not address the complicating (yet advantageous) presence of intra-aquifer shales.
Research Organization:
Lawrence Livermore National Lab., CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15002151
Report Number(s):
UCRL-JC-146929
Country of Publication:
United States
Language:
English