skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The interaction of ground water and surface water within fall chinook salmon spawning areas in the Hanford Reach of the Columbia River

Conference ·
OSTI ID:15001691

Fall chinook salmon (Oncorhynchus tshawytscha) spawned predominantly in areas of the Hanford Reach of the Columbia River where hyporheic water discharged into the river channel. This upwelling water had a dissolved solids content (i.e., specific conductance) indicative of river water and was presumed to have entered highly permeable riverbed substrate at locations upstream of the spawning areas. Hyporheic discharge zones composed of undiluted ground water or areas with little or no upwelling were not used by spawning salmon. Rates of upwelling into spawning areas averaged 1,200 L / m{sup 2} / day (95% C.I.= 784 to 1,665 L / m{sup 2} / day) as compared to approximately 500 L / m{sup 2} / day (95% C.I.= 303 to 1,159 L / m{sup 2} / day) in non-spawning areas. Dissolved oxygen content of the hyporheic discharge near salmon spawning areas was about 9 mg/L (+/-0.4 mg/L) whereas in non-spawning areas dissolved oxygen values were 7 mg/L (+/- 0.9 mg/L) or lower. In both cases dissolved oxygen of the river water was higher (11.3+/- 0.3 mg/L). Physical and chemical gradients between the hyporheic zone and the river may provide cues for adult salmon to locate suitable spawning areas. This information will help fisheries managers to describe the suitability of salmon spawning habitat in large rivers.

Research Organization:
Pacific Northwest National Lab., Richland, WA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
15001691
Report Number(s):
PNNL-SA-31715; 400480000; TRN: US200406%%133
Resource Relation:
Conference: Proceedings of the Ground-Water/Surface-Water Interactions Workshop, Conference location not given, Conference dates not given; Other Information: PBD: 1 Jan 2000
Country of Publication:
United States
Language:
English