Electrical Detection of Charge-to-spin and Spin-to-Charge Conversion in a Topological Insulator Bi2Te3 Using BN/Al2O3 Hybrid Tunnel Barrier
- Naval Research Lab. (NRL), Washington, DC (United States). Materials Science and Technology Division; OSTI
- Naval Research Lab. (NRL), Washington, DC (United States). Materials Science and Technology Division
- West Virginia Univ., Morgantown, WV (United States). Dept. of Physics and Astronomy
One of the most striking properties of three-dimensional topological insulators (TIs) is spin-momentum locking, where the spin is locked at right angles to momentum and hence an unpolarized charge current creates a net spin polarization. Alternatively, if a net spin is injected into the TI surface state system, it is distinctively associated with a unique carrier momentum and hence should generate a charge accumulation, as in the so-called inverse Edelstein effect. Here using a Fe/Al2O3/BN tunnel barrier, we demonstrate both effects in a single device in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface state system. This work is the first to utilize BN as part of a hybrid tunnel barrier on TI, where we observed a high spin polarization of 93% for the TI surfaces states. The reverse spin-to-charge measurement is an independent confirmation that spin and momentum are locked in the surface states of TI, and offers additional avenues for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the spin system within TI surface states, an important step towards its utilization in TI-based spintronics devices.
- Research Organization:
- West Virginia Univ., Morgantown, WV (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Grant/Contract Number:
- SC0017632
- OSTI ID:
- 1499984
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Vol. 8; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Reply to: “On the understanding of current-induced spin polarization of three-dimensional topological insulators”
|
journal | June 2019 |
| Electrical detection of current generated spin in topological insulator surface states: Role of interface resistance | preprint | January 2018 |
Electrical detection of current generated spin in topological insulator surface states: Role of interface resistance
|
journal | May 2019 |
Similar Records
Opposite current-induced spin polarizations in bulk-metallic Bi2Se3 and bulk-insulating Bi2Te2Se topological insulator thin flakes