skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth

Journal Article · · Chemistry of Materials

Ordered synthesis of one-dimensional nanostructures, such as carbon nanotubes (CNTs), involves competition between the growth kinetics of individual structures, their physical entanglement, and intermolecular forces that cause coupling of structures in close proximity. Specifically, CNT synthesis by chemical vapor deposition can directly produce films and fibers by providing CNT growth sites in close proximity such that the CNTs self-align into macroscopic assemblies. Because CNTs are mechanically coupled during these processes, the question arises as to whether or not mechanical forces intrinsic to the formation of CNT ensembles influence the growth kinetics and quality of CNTs, as can be expected from fundamental theories of mechanochemistry. Here, we study how mechanical forces influence CNT growth by applying controlled compression to CNT forests in situ; and relate the outcomes quantitatively to the CNT morphology and lengthening rate. We find that applied forces inhibit the self-organization of CNTs into a forest and accelerate the termination of collective growth. By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. Here, we attribute the slower growth kinetics to a stress-dependent increase of 0.02–0.16 eV in the effective activation energy for CNT growth. Via finite element modeling, we conclude that the force magnitudes that cause remodeling of the growing CNT network are less than the average strengths of adhesive contacts between CNTs. Last, we find that CNT growth rate and orientation can respond dynamically to changes in applied force, further demonstrating the mechanochemical nature of CNT growth and suggesting new approaches to control CNT quality and morphology in situ, with general application to other one-dimensional nanostructures.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Science Foundation (NSF)
Grant/Contract Number:
AC02-06CH11357; SC0010795
OSTI ID:
1498100
Journal Information:
Chemistry of Materials, Vol. 31, Issue 2; ISSN 0897-4756
Publisher:
American Chemical Society (ACS)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science