skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Review of Equation-of-State Models for Inertial Confinement Fusion Materials

Abstract

Material equation-of-state (EOS) models, generally providing the pressure and internal energy for a given density and temperature, are required to close the equations of hydrodynamics. As a result they are an essential piece of physics used to simulate inertial con nement fusion (ICF) implosions. Historically, EOS models based on different physical/chemical pictures of matter have been developed for ICF relevant materials such as the deuterium (D2) or deuterium-tritium (DT) fuel, as well as candidate ablator materials such as polystyrene (CH), glow-discharge polymer (GDP), Berylium (Be), Carbon (C), and boron carbide (B 4C). The accuracy of these EOS models can directly affect the reliability of ICF target design and understanding, as shock timing and material compressibility are essentially determined by what EOS models are used in ICF simulations. Systematic comparisons of current EOS models, benchmarking with experiments, not only help us to understand what model differences are and why they occur, but also to identify the state-of-the-art EOS models for ICF target designers to use. For this purpose, the first Equation of- State Workshop, supported by the US Department of Energy's ICF program, was held at the Laboratory for Laser Energetics (LLE), University of Rochester on 31 May - 2nd June,more » 2017. Finally, this paper presents a detailed review on the findings from this workshop: (1) 5-10% model-model variations exist throughout the relevant parameter space, and can be much larger in regions where ionization and dissociation are occurring, (2) the D 2 EOS is particularly uncertain, with no single model able to match the available experimental data, and this drives similar uncertainties in the CH EOS, and (3) new experimental capabilities such as Hugoniot measurements around 100 Mbar and high-quality temperature measurements are essential to reducing EOS uncertainty.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [2]; ORCiD logo [1];  [5]; ORCiD logo [6]; ORCiD logo [3];  [2];  [6];  [3];  [3];  [7];  [2];  [1];  [1];  [1];  [1] more »;  [8];  [9];  [10]; ORCiD logo [11];  [12];  [2]; ORCiD logo [3];  [13];  [1]; ORCiD logo [14];  [3];  [4];  [3]; ORCiD logo [6];  [15];  [6];  [16]; ORCiD logo [6];  [1];  [17]; ORCiD logo [1];  [1];  [10]; ORCiD logo [15] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France)
  4. Univ. Rostock, Rostock (Germany). Inst. für Physik
  5. Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  7. National Research Council of Canada, Ottawa (Canada)
  8. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  9. Univ. of Montreal, Quebec (Canada)
  10. Peking Univ., Beijing (China). Center for Applied Physics and Technology, HEDPS; Inst. of Applied Physics and Computational Mathematics, Beijing (China)
  11. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Materials Science & Engineering
  12. Peking Univ., Beijing (China). Center for Applied Physics and Technology, HEDPS; Peking Univ., Beijing (China). College of Engineering
  13. Washington State Univ., Pullman, WA (United States)
  14. Univ. of L’Aquila (Italy).Dept. of Physical and Chemical Sciences; Univ. Paris-Sud, Orsay (France); Univ. Paris-Saclay, Gif-sur-Yvette (France). Maison de la Simulation
  15. State Univ. of New York at Buffalo (SUNY), Buffalo, NY (United States). Dept. of Chemistry
  16. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  17. AWE Aldermaston, Reading, Berkshire (United Kingdom)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Ames Laboratory (AMES), Ames, IA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1497265
Alternate Identifier(s):
OSTI ID: 1476340; OSTI ID: 1483369; OSTI ID: 1489960; OSTI ID: 1496980
Report Number(s):
2018-156; 1-437; IS-J-9757; LA-UR-18-25070; SAND-2018-9706J; LLNL-JRNL-750338
Journal ID: ISSN 1574-1818; 2018-156, 1437, 2395
Grant/Contract Number:  
NA0001944; AC52-07NA27344; AC52-06NA25396; NA0003525; FWP-14-017426; AC02-07CH11358; NA0002006; U1530113; SC0002139; 89233218CNA000001; AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
High Energy Density Physics
Additional Journal Information:
Journal Volume: 28; Journal Issue: C; Journal ID: ISSN 1574-1818
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 36 MATERIALS SCIENCE; Equation of state; High Energy Density Physics; Inertial Confinement Fusion

Citation Formats

Gaffney, J. A., Hu, S. X., Arnault, P., Becker, A., Benedict, L. X., Boehly, T. R., Celliers, P. M., Ceperley, D. M., Čertík, O., Clérouin, J., Collins, G. W., Collins, L. A., Danel, J. -F., Desbiens, N., Dharma-wardana, M. W. C., Ding, Y. H., Fernandez-Pañella, A., Gregor, M. C., Grabowski, P. E., Hamel, S., Hansen, S. B., Harbour, L., He, X. T., Johnson, D. D., Kang, W., Karasiev, V. V., Kazandjian, L., Knudson, M. D., Ogitsu, T., Pierleoni, C., Piron, R., Redmer, R., Robert, G., Saumon, D., Shamp, A., Sjostrom, T., Smirnov, A. V., Starrett, C. E., Sterne, P. A., Wardlow, A., Whitley, H. D., Wilson, B., Zhang, P., and Zurek, E. A Review of Equation-of-State Models for Inertial Confinement Fusion Materials. United States: N. p., 2018. Web. doi:10.1016/j.hedp.2018.08.001.
Gaffney, J. A., Hu, S. X., Arnault, P., Becker, A., Benedict, L. X., Boehly, T. R., Celliers, P. M., Ceperley, D. M., Čertík, O., Clérouin, J., Collins, G. W., Collins, L. A., Danel, J. -F., Desbiens, N., Dharma-wardana, M. W. C., Ding, Y. H., Fernandez-Pañella, A., Gregor, M. C., Grabowski, P. E., Hamel, S., Hansen, S. B., Harbour, L., He, X. T., Johnson, D. D., Kang, W., Karasiev, V. V., Kazandjian, L., Knudson, M. D., Ogitsu, T., Pierleoni, C., Piron, R., Redmer, R., Robert, G., Saumon, D., Shamp, A., Sjostrom, T., Smirnov, A. V., Starrett, C. E., Sterne, P. A., Wardlow, A., Whitley, H. D., Wilson, B., Zhang, P., & Zurek, E. A Review of Equation-of-State Models for Inertial Confinement Fusion Materials. United States. doi:10.1016/j.hedp.2018.08.001.
Gaffney, J. A., Hu, S. X., Arnault, P., Becker, A., Benedict, L. X., Boehly, T. R., Celliers, P. M., Ceperley, D. M., Čertík, O., Clérouin, J., Collins, G. W., Collins, L. A., Danel, J. -F., Desbiens, N., Dharma-wardana, M. W. C., Ding, Y. H., Fernandez-Pañella, A., Gregor, M. C., Grabowski, P. E., Hamel, S., Hansen, S. B., Harbour, L., He, X. T., Johnson, D. D., Kang, W., Karasiev, V. V., Kazandjian, L., Knudson, M. D., Ogitsu, T., Pierleoni, C., Piron, R., Redmer, R., Robert, G., Saumon, D., Shamp, A., Sjostrom, T., Smirnov, A. V., Starrett, C. E., Sterne, P. A., Wardlow, A., Whitley, H. D., Wilson, B., Zhang, P., and Zurek, E. Sat . "A Review of Equation-of-State Models for Inertial Confinement Fusion Materials". United States. doi:10.1016/j.hedp.2018.08.001. https://www.osti.gov/servlets/purl/1497265.
@article{osti_1497265,
title = {A Review of Equation-of-State Models for Inertial Confinement Fusion Materials},
author = {Gaffney, J. A. and Hu, S. X. and Arnault, P. and Becker, A. and Benedict, L. X. and Boehly, T. R. and Celliers, P. M. and Ceperley, D. M. and Čertík, O. and Clérouin, J. and Collins, G. W. and Collins, L. A. and Danel, J. -F. and Desbiens, N. and Dharma-wardana, M. W. C. and Ding, Y. H. and Fernandez-Pañella, A. and Gregor, M. C. and Grabowski, P. E. and Hamel, S. and Hansen, S. B. and Harbour, L. and He, X. T. and Johnson, D. D. and Kang, W. and Karasiev, V. V. and Kazandjian, L. and Knudson, M. D. and Ogitsu, T. and Pierleoni, C. and Piron, R. and Redmer, R. and Robert, G. and Saumon, D. and Shamp, A. and Sjostrom, T. and Smirnov, A. V. and Starrett, C. E. and Sterne, P. A. and Wardlow, A. and Whitley, H. D. and Wilson, B. and Zhang, P. and Zurek, E.},
abstractNote = {Material equation-of-state (EOS) models, generally providing the pressure and internal energy for a given density and temperature, are required to close the equations of hydrodynamics. As a result they are an essential piece of physics used to simulate inertial con nement fusion (ICF) implosions. Historically, EOS models based on different physical/chemical pictures of matter have been developed for ICF relevant materials such as the deuterium (D2) or deuterium-tritium (DT) fuel, as well as candidate ablator materials such as polystyrene (CH), glow-discharge polymer (GDP), Berylium (Be), Carbon (C), and boron carbide (B4C). The accuracy of these EOS models can directly affect the reliability of ICF target design and understanding, as shock timing and material compressibility are essentially determined by what EOS models are used in ICF simulations. Systematic comparisons of current EOS models, benchmarking with experiments, not only help us to understand what model differences are and why they occur, but also to identify the state-of-the-art EOS models for ICF target designers to use. For this purpose, the first Equation of- State Workshop, supported by the US Department of Energy's ICF program, was held at the Laboratory for Laser Energetics (LLE), University of Rochester on 31 May - 2nd June, 2017. Finally, this paper presents a detailed review on the findings from this workshop: (1) 5-10% model-model variations exist throughout the relevant parameter space, and can be much larger in regions where ionization and dissociation are occurring, (2) the D2 EOS is particularly uncertain, with no single model able to match the available experimental data, and this drives similar uncertainties in the CH EOS, and (3) new experimental capabilities such as Hugoniot measurements around 100 Mbar and high-quality temperature measurements are essential to reducing EOS uncertainty.},
doi = {10.1016/j.hedp.2018.08.001},
journal = {High Energy Density Physics},
issn = {1574-1818},
number = C,
volume = 28,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share: