skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface Characterization within a Nuclear Fuel Plate

Journal Article · · Applied Sciences
DOI:https://doi.org/10.3390/app9020249· OSTI ID:1497055

To predict the performance of nuclear fuels and materials, irradiated fuel plates must be characterized efficiently and accurately in highly radioactive environments. The characterization must take place remotely and work in settings largely inhospitable to modern digital instrumentation. Characterization techniques based on non-contacting laser sensing methods enable remote operation in a robust manner within a hot-cell environment. Laser characterization instrumentation can offer high spatial resolution and remain effective for scanning large areas. A laser shock (LS) system is currently being developed as a post-irradiation examination (PIE) technique in the hot fuel examination facility (HFEF) at the Idaho National Laboratory (INL). The laser shock technique will characterize material properties and failure loads/mechanisms in various composite components and materials such as plate fuel and next-generation fuel forms in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel–clad bond. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the application of the laser shock. The laser shock system has been used to characterize the resulting bond strength within plate fuels which have been fabricated using different fabrication processes. Furthermore, the results of this study will be to select the fabrication process that provides the strongest interface.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC07-05ID14517
OSTI ID:
1497055
Report Number(s):
INL/JOU-18-52160-Rev000; ASPCC7
Journal Information:
Applied Sciences, Vol. 9, Issue 2; ISSN 2076-3417
Publisher:
MDPICopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

References (3)

Adhesive bond testing of carbon–epoxy composites by laser shockwave journal December 2010
Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing journal November 2010
Bulge Testing and Interface Fracture Characterization of Plasma-Sprayed and HIP Bonded Zr Coatings on U-Mo journal December 2014