SUSPECT: MINLP special structure detector for Pyomo
Journal Article
·
· Optimization Letters
- Imperial College London, London (United Kingdom). Dept. of Computing
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
We present SUSPECT, an open source toolkit that symbolically analyzes mixed-integer nonlinear optimization problems formulated using the Python algebraic modeling library Pyomo. We present the data structures and algorithms used to implement SUSPECT. SUSPECT works on a directed acyclic graph representation of the optimization problem to perform: bounds tightening, bound propagation, monotonicity detection, and convexity detection. We show how the tree-walking rules in SUSPECT balance the need for lightweight computation with effective special structure detection. SUSPECT can be used as a standalone tool or as a Python library to be integrated in other tools or solvers. Here, we highlight the easy extensibility of SUSPECT with several recent convexity detection tricks from the literature. We also report experimental results on the MINLPLib 2 dataset.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE Office of Fossil Energy (FE)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1496978
- Report Number(s):
- SAND--2019-1376J; 672405
- Journal Information:
- Optimization Letters, Journal Name: Optimization Letters Vol. 14; ISSN 1862-4472
- Publisher:
- Springer NatureCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Pyomo : Python Optimization Modeling Objects.
Pyomo
Pyomo v5.0
Conference
·
Mon Nov 01 00:00:00 EDT 2010
·
OSTI ID:1035667
Pyomo
Software
·
Mon Oct 19 00:00:00 EDT 2015
·
OSTI ID:1245819
Pyomo v5.0
Software
·
Mon May 08 20:00:00 EDT 2017
·
OSTI ID:code-45365