An ultrafast symmetry switch in a Weyl semimetal
more »
- Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
- Stanford Univ., CA (United States). Dept. of Chemistry
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
- SLAC National Accelerator Lab., Menlo Park, CA (United States)
- SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
- SLAC National Accelerator Lab., Menlo Park, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
- Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
- Columbia Univ., New York, NY (United States). Dept. of Mechanical Engineering
- Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab) and Dept. of Physics
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States). Dept. of Applied Physics
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
Topological quantum materials exhibit fascinating properties with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron–ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend. However, conventional means of applying strain through heteroepitaxial lattice mismatch and dislocations are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here in this paper we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1492730
- Journal Information:
- Nature (London), Journal Name: Nature (London) Journal Issue: 7737 Vol. 565; ISSN 0028-0836
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5
Journal Article
·
Sun Jan 17 19:00:00 EST 2021
· Nature Materials
·
OSTI ID:1762116