Designing Nanomagnet Arrays for Topological Nanowires in Silicon
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Microsoft Research, Redmond, WA (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Recent interest in topological quantum computing has driven research into topological nanowires, one-dimensional quantum wires that support topological modes, including Majorana fermions. Most topological nanowire designs rely on materials with strong spin-orbit coupling, such as InAs or InSb, used in combination with superconductors. It would be advantageous to fabricate topological nanowires with Si owing to its mature technology. However, the intrinsic spin-orbit coupling in Si is weak. One approach that could circumvent this material deficiency is to rotate the electron spins with nanomagnets. Here we perform detailed simulations of realistic Si/SiGe systems with an artificial spin-orbit gap induced by a nanomagnet array. Most of our results are generalizable to other nanomagnet-based topological nanowire designs. By studying several concrete examples, we gain insight into the effects of nanomagnet arrays, leading to design rules and guidelines. In particular, we develop a recipe for eliminating unwanted gaps that result from realistic nanomagnet designs. Lastly, we present an experimentally realizable design using magnets with a single polarization.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1492365
- Alternate ID(s):
- OSTI ID: 1524388
- Report Number(s):
- SAND--2018-13867J; 670714
- Journal Information:
- Physical Review Applied, Journal Name: Physical Review Applied Journal Issue: 5 Vol. 10; ISSN 2331-7019; ISSN PRAHB2
- Publisher:
- American Physical Society (APS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
In-plane selective area InSb–Al nanowire quantum networks