skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activation of enriched environmental xenon by 14-MeV neutrons

Abstract

The international monitoring system exists to verify compliance with the terms of the comprehensive test ban treaty. About 10% of the member stations will be capable of detecting radioxenon, which can be produced in nuclear detonations or through civilian processes. We have studied the activation of radioxenon by the prompt, intense spectrum of 14-MeV neutrons produced at the National Ignition Facility. While 14-MeV neutrons are not currently a significant contributor to the production of radioxenon, we find that radioxenon produced through activation of environmental xenon by 14-MeV neutrons would be distinguishable from activation by nuclear tests.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1488799
Report Number(s):
LLNL-JRNL-740145
Journal ID: ISSN 0236-5731; 892763
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Radioanalytical and Nuclear Chemistry
Additional Journal Information:
Journal Volume: 317; Journal Issue: 1; Journal ID: ISSN 0236-5731
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; Radioxenon; CTBTO; Environmental monitoring; Treaty verification; Neutron activation; National Ignition Facility

Citation Formats

Ratkiewicz, A., Hopkins, L. Berzak, Bleuel, D. L., Cassata, W. S., Cerjan, C., Dauffy, L., London, R., Meeker, D., Velsko, C. A., and Yeamans, C. B. Activation of enriched environmental xenon by 14-MeV neutrons. United States: N. p., 2018. Web. doi:10.1007/s10967-018-5911-4.
Ratkiewicz, A., Hopkins, L. Berzak, Bleuel, D. L., Cassata, W. S., Cerjan, C., Dauffy, L., London, R., Meeker, D., Velsko, C. A., & Yeamans, C. B. Activation of enriched environmental xenon by 14-MeV neutrons. United States. doi:10.1007/s10967-018-5911-4.
Ratkiewicz, A., Hopkins, L. Berzak, Bleuel, D. L., Cassata, W. S., Cerjan, C., Dauffy, L., London, R., Meeker, D., Velsko, C. A., and Yeamans, C. B. Sat . "Activation of enriched environmental xenon by 14-MeV neutrons". United States. doi:10.1007/s10967-018-5911-4. https://www.osti.gov/servlets/purl/1488799.
@article{osti_1488799,
title = {Activation of enriched environmental xenon by 14-MeV neutrons},
author = {Ratkiewicz, A. and Hopkins, L. Berzak and Bleuel, D. L. and Cassata, W. S. and Cerjan, C. and Dauffy, L. and London, R. and Meeker, D. and Velsko, C. A. and Yeamans, C. B.},
abstractNote = {The international monitoring system exists to verify compliance with the terms of the comprehensive test ban treaty. About 10% of the member stations will be capable of detecting radioxenon, which can be produced in nuclear detonations or through civilian processes. We have studied the activation of radioxenon by the prompt, intense spectrum of 14-MeV neutrons produced at the National Ignition Facility. While 14-MeV neutrons are not currently a significant contributor to the production of radioxenon, we find that radioxenon produced through activation of environmental xenon by 14-MeV neutrons would be distinguishable from activation by nuclear tests.},
doi = {10.1007/s10967-018-5911-4},
journal = {Journal of Radioanalytical and Nuclear Chemistry},
issn = {0236-5731},
number = 1,
volume = 317,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system
journal, January 2002

  • Bowyer, T. W.; Schlosser, C.; Abel, K. H.
  • Journal of Environmental Radioactivity, Vol. 59, Issue 2, p. 139-151
  • DOI: 10.1016/S0265-931X(01)00042-X