Dehydrogenation Selectivity of Ethanol on Close-Packed Transition Metal Surfaces: A Computational Study of Monometallic, Pd/Au, and Rh/Au Catalysts
- Univ. of Texas, Austin, TX (United States). Dept. of Chemistry, and the Inst. for Computational Engineering and Sciences
Ethanol (EtOH) decomposition has been widely studied in recent years. However, the initial dehydrogenation selectivity on catalytic surfaces, which plays a crucial role in EtOH partial oxidation and steam reforming, is not well understood. Here, density functional theory (DFT) was used to calculate the initial dehydrogenation selectivities of EtOH on monometallic and X/Au (X = Pd and Rh) close-packed surfaces. The energy for the initial bond scissions of O–H and α- and β-C–H were calculated on each surface. The binding energy of EtOH is found to be a good reactivity descriptor for the scission of O–H and β-C–H bonds, while the binding energy of CH3CHOH is a good reaction descriptor for α-C–H bond scission. The scaling relationships between the activation energy barriers and binding energies on Pd/Au and Rh/Au surface alloys are significantly different from those of monometallic surfaces. Additionally, the specific atomic ensembles on the Pd/Au and Rh/Au surfaces have different initial dehydrogenation selectivities of EtOH. Our calculated scaling relationships were used to construct contour plots that provide predictive trends for the selectivity of the initial EtOH dehydrogenation. We conclude that the presence of specific atomic ensembles on the surface of alloy catalysts can efficiently control the reaction products of EtOH dehydrogenation.
- Research Organization:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
- Grant/Contract Number:
- SC0010576
- OSTI ID:
- 1483659
- Journal Information:
- Journal of Physical Chemistry. C, Journal Name: Journal of Physical Chemistry. C Journal Issue: 49 Vol. 121; ISSN 1932-7447
- Publisher:
- American Chemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English