Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- National Energy Technology Lab. (NETL), Morgantown, WV (United States)
- Pfizer Inc., Groton, CT (United States)
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of their inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. We first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design's predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.
- Research Organization:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States)
- Sponsoring Organization:
- USDOE Office of Fossil Energy (FE)
- Grant/Contract Number:
- 89233218CNA000001; AC05-76RL01830
- OSTI ID:
- 1482924
- Alternate ID(s):
- OSTI ID: 1357718
OSTI ID: 1471793
- Report Number(s):
- LA-UR--18-21207
- Journal Information:
- Powder Technology, Journal Name: Powder Technology Vol. 312; ISSN 0032-5910
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture
Hierarchical calibration and validation for modeling bench-scale solvent-based carbon capture. Part 1: Non-reactive physical mass transfer across the wetted wall column