skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

Abstract

This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture atmore » a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.« less

Authors:
;
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
14819
Report Number(s):
SAND98-1789
TRN: US0106804
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Sep 1999
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 54 ENVIRONMENTAL SCIENCES; PLANTS; UPTAKE; NEVADA TEST SITE; RADIOACTIVE WASTE DISPOSAL; SOILS; MATHEMATICAL MODELS; RADIONUCLIDE KINETICS; RADIONUCLIDE MIGRATION; MOISTURE; RADIOACTIVE WASTE FACILITIES; PERFORMANCE; ALPHA-BEARING WASTES

Citation Formats

BROWN,THERESA J., and WIRTH,SHARON. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site. United States: N. p., 1999. Web. doi:10.2172/14819.
BROWN,THERESA J., & WIRTH,SHARON. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site. United States. doi:10.2172/14819.
BROWN,THERESA J., and WIRTH,SHARON. Wed . "Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site". United States. doi:10.2172/14819. https://www.osti.gov/servlets/purl/14819.
@article{osti_14819,
title = {Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site},
author = {BROWN,THERESA J. and WIRTH,SHARON},
abstractNote = {This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.},
doi = {10.2172/14819},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1999},
month = {9}
}