skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication, Welding, and Inspection Techniques in Preparation for In-Reactor Testing of Accident Tolerant Fuels

Conference ·

After the Fukushima events in 2011, DOE-NE in collaboration with nuclear industry shifted R&D emphasis to accident performance of LWR fuels under extended loss of active cooling and steam exposure. DOE-NE has created a roadmap for the “Development of Light Water Reactor Fuels with Enhanced Accident Tolerance.” The mission of the Accident Tolerant Fuel (ATF) Roadmap is to develop the next generation of LWR fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. The ultimate goal of the ATF roadmap is to support the insertion of lead fuel rods (LFRs) or lead fuel assemblies (LFAs) of an Accident Tolerant Fuel into a commercial LWR within 10 years (i.e., by the end of FY-2022). As a step toward this goal, an irradiation test series has been developed to assess the performance of proposed ATF concepts under normal LWR operating conditions. Data generated by this test program will be used to establish the feasibility of certain aspects of proposed ATF concepts, as well as provide information to support screening among concepts; as such, it is an integral part of Phase I: Feasibility Assessment and Down-Selection outlined in the ATF Roadmap. This irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL), and it has been designated as the ATF-1 test series. Current fission reactors use zirconium-based fuel cladding because of its extremely low macroscopic thermal neutron absorption cross-section, good high temperature strength, and decent corrosion resistance. However, advanced, innovative materials may provide these same benefits while increasing reactor safety margin, core power density, and fuel utilization. These advanced fuel cladding systems will allow revolutionary cladding performance and enhanced fuel mechanical designs, however, challenges exist in design, analysis and fabrication of innovative, never before tested, fuel cladding systems for in-reactor testing. This paper highlights the challenges associated with design, fabrication and welding, and inspection of innovative materials and actions taken to address those challenges in preparation for the Phase I ATR irradiation testing. The lessons learned from Phase I of this experiment can be used to guide researchers for design and analysis of future in-reactor testing of advanced fuel cladding systems.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1481875
Report Number(s):
INL/CON-15-34788-Rev000
Resource Relation:
Conference: 2015 ASME-PVP Conference, Boston, MA, 07/19/2015 - 07/24/2015
Country of Publication:
United States
Language:
English

Similar Records

Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests
Journal Article · Tue Dec 01 00:00:00 EST 2015 · Nuclear Engineering and Design · OSTI ID:1481875

Fabrication and Qualification of Small Scale Irradiation Experiments in Support of the Accident Tolerant Fuels Program
Conference · Tue Feb 16 00:00:00 EST 2016 · OSTI ID:1481875

Overview of LWR Accident Tolerant Fuel Development in the United States
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:1481875