skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer [Super Stiff and Highly Transparent Multilayer Thin Films Prepared through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer]

Abstract

Due to their exceptional orientation of 2D nanofillers, layer–by–layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone–stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin–Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel–alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene–filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. In conclusion, the technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.

Authors:
 [1];  [2];  [2];  [2];  [3];  [4];  [2];  [2]
  1. Texas A & M Univ., College Station, TX (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
  2. Texas A & M Univ., College Station, TX (United States)
  3. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Clemson Univ., Clemson, SC (United States)
  4. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1481268
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 26; Journal Issue: 13; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; elastic modulus; graphene; hydrogen bonding; layer‐by‐layer assembly; light transmittance

Citation Formats

Xiang, Fangming, Parviz, Dorsa, Givens, Tara M., Tzeng, Ping, Davis, Eric M., Stafford, Christopher M., Green, Micah J., and Grunlan, Jaime C. Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer [Super Stiff and Highly Transparent Multilayer Thin Films Prepared through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer]. United States: N. p., 2016. Web. doi:10.1002/adfm.201504758.
Xiang, Fangming, Parviz, Dorsa, Givens, Tara M., Tzeng, Ping, Davis, Eric M., Stafford, Christopher M., Green, Micah J., & Grunlan, Jaime C. Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer [Super Stiff and Highly Transparent Multilayer Thin Films Prepared through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer]. United States. doi:10.1002/adfm.201504758.
Xiang, Fangming, Parviz, Dorsa, Givens, Tara M., Tzeng, Ping, Davis, Eric M., Stafford, Christopher M., Green, Micah J., and Grunlan, Jaime C. Mon . "Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer [Super Stiff and Highly Transparent Multilayer Thin Films Prepared through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer]". United States. doi:10.1002/adfm.201504758. https://www.osti.gov/servlets/purl/1481268.
@article{osti_1481268,
title = {Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer [Super Stiff and Highly Transparent Multilayer Thin Films Prepared through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer]},
author = {Xiang, Fangming and Parviz, Dorsa and Givens, Tara M. and Tzeng, Ping and Davis, Eric M. and Stafford, Christopher M. and Green, Micah J. and Grunlan, Jaime C.},
abstractNote = {Due to their exceptional orientation of 2D nanofillers, layer–by–layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone–stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin–Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel–alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene–filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. In conclusion, the technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.},
doi = {10.1002/adfm.201504758},
journal = {Advanced Functional Materials},
issn = {1616-301X},
number = 13,
volume = 26,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Impermeable Atomic Membranes from Graphene Sheets
journal, August 2008

  • Bunch, J. Scott; Verbridge, Scott S.; Alden, Jonathan S.
  • Nano Letters, Vol. 8, Issue 8
  • DOI: 10.1021/nl801457b

Ultra-Robust Graphene Oxide-Silk Fibroin Nanocomposite Membranes
journal, March 2013

  • Hu, Kesong; Gupta, Maneesh K.; Kulkarni, Dhaval D.
  • Advanced Materials, Vol. 25, Issue 16
  • DOI: 10.1002/adma.201300179

The Halpin-Tsai equations: A review
journal, May 1976

  • Affdl, J. C. Halpin; Kardos, J. L.
  • Polymer Engineering and Science, Vol. 16, Issue 5
  • DOI: 10.1002/pen.760160512

Improving the Gas Barrier Property of Clay–Polymer Multilayer Thin Films Using Shorter Deposition Times
journal, December 2013

  • Xiang, Fangming; Tzeng, Ping; Sawyer, Justin S.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9
  • DOI: 10.1021/am403445z

High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly
journal, August 2010

  • Putz, Karl W.; Compton, Owen C.; Palmeri, Marc J.
  • Advanced Functional Materials, Vol. 20, Issue 19
  • DOI: 10.1002/adfm.201000723

Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production
journal, February 2012


Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes
journal, December 2009

  • Bourlinos, Athanasios B.; Georgakilas, Vasilios; Zboril, Radek
  • Solid State Communications, Vol. 149, Issue 47-48, p. 2172-2176
  • DOI: 10.1016/j.ssc.2009.09.018

Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer
journal, September 2012

  • Parviz, Dorsa; Das, Sriya; Ahmed, H. S. Tanvir
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn302784m

Transparent Clay−Polymer Nano Brick Wall Assemblies with Tailorable Oxygen Barrier
journal, December 2009

  • Priolo, Morgan A.; Gamboa, Daniel; Grunlan, Jaime C.
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 1
  • DOI: 10.1021/am900820k

Adsorption of polyelectrolyte modified graphene to silica surfaces: Monolayers and multilayers
journal, June 2012


Note: Influence of rinsing and drying routines on growth of multilayer thin films using automated deposition system
journal, March 2010

  • Gamboa, Daniel; Priolo, Morgan A.; Ham, Aaron
  • Review of Scientific Instruments, Vol. 81, Issue 3
  • DOI: 10.1063/1.3310088

Graphene/Polymer Nanocomposites
journal, August 2010

  • Kim, Hyunwoo; Abdala, Ahmed A.; Macosko, Christopher W.
  • Macromolecules, Vol. 43, Issue 16
  • DOI: 10.1021/ma100572e

Graphene-based polymer nanocomposites
journal, January 2011


The chemistry of graphene oxide
journal, January 2010

  • Dreyer, Daniel R.; Park, Sungjin; Bielawski, Christopher W.
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B917103G

Functionalized graphene sheets for polymer nanocomposites
journal, May 2008

  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.
  • Nature Nanotechnology, Vol. 3, Issue 6, p. 327-331
  • DOI: 10.1038/nnano.2008.96

Mechanical responses of a polymer graphene-sheet nano-sandwich
journal, September 2014


Characterizing Polymer Brushes via Surface Wrinkling
journal, December 2007

  • Huang, Heqing; Chung, Jun Young; Nolte, Adam J.
  • Chemistry of Materials, Vol. 19, Issue 26
  • DOI: 10.1021/cm702456u

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites
journal, January 2012

  • Yousefi, Nariman; Gudarzi, Mohsen Moazzami; Zheng, Qingbin
  • Journal of Materials Chemistry, Vol. 22, Issue 25
  • DOI: 10.1039/c2jm30590a

Effect of Relative Humidity on the Young’s Modulus of Polyelectrolyte Multilayer Films and Related Nonionic Polymers
journal, August 2008

  • Nolte, Adam J.; Treat, Neil D.; Cohen, Robert E.
  • Macromolecules, Vol. 41, Issue 15
  • DOI: 10.1021/ma800732j

Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity
journal, June 2010

  • Kim, Hyunwoo; Miura, Yutaka; Macosko, Christopher W.
  • Chemistry of Materials, Vol. 22, Issue 11
  • DOI: 10.1021/cm100477v

Ultrastrong and Stiff Layered Polymer Nanocomposites
journal, October 2007


Liquid phase exfoliation and crumpling of inorganic nanosheets
journal, January 2015

  • Bari, Rozana; Parviz, Dorsa; Khabaz, Fardin
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C5CP00294J

Layer-by-layer assembly for rapid fabrication of thick polymeric films
journal, January 2012

  • Li, Yang; Wang, Xu; Sun, Junqi
  • Chemical Society Reviews, Vol. 41, Issue 18
  • DOI: 10.1039/c2cs35107b

Fracture and Fatigue in Graphene Nanocomposites
journal, January 2010


Graphene Oxide Dispersions in Organic Solvents
journal, October 2008

  • Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.
  • Langmuir, Vol. 24, Issue 19
  • DOI: 10.1021/la801744a

Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites
journal, August 1997


Elastic Properties of Chemically Derived Single Graphene Sheets
journal, July 2008

  • Gómez-Navarro, Cristina; Burghard, Marko; Kern, Klaus
  • Nano Letters, Vol. 8, Issue 7
  • DOI: 10.1021/nl801384y

Conductive oxygen barrier films using supramolecular assembly of graphene embedded polyelectrolyte multilayers
journal, November 2013

  • Gokhale, Ankush A.; Lu, Jue; Parker, Nathan J.
  • Journal of Colloid and Interface Science, Vol. 409
  • DOI: 10.1016/j.jcis.2013.07.036

Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics
journal, November 2007

  • Shim, Bong Sup; Tang, Zhiyong; Morabito, Matthew P.
  • Chemistry of Materials, Vol. 19, Issue 23
  • DOI: 10.1021/cm070442a

Approaching ballistic transport in suspended graphene
journal, July 2008

  • Du, Xu; Skachko, Ivan; Barker, Anthony
  • Nature Nanotechnology, Vol. 3, Issue 8, p. 491-495
  • DOI: 10.1038/nnano.2008.199

Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties
journal, September 2010

  • Chung, Jun Young; Nolte, Adam J.; Stafford, Christopher M.
  • Advanced Materials, Vol. 23, Issue 3
  • DOI: 10.1002/adma.201001759

Graphene-based composite materials
journal, July 2006

  • Stankovich, Sasha; Dikin, Dmitriy A.; Dommett, Geoffrey H. B.
  • Nature, Vol. 442, Issue 7100, p. 282-286
  • DOI: 10.1038/nature04969

Layer-by-Layer Assembly of Thin Films Containing Exfoliated Pristine Graphene Nanosheets and Polyethyleneimine
journal, February 2014

  • Sham, Alison Y. W.; Notley, Shannon M.
  • Langmuir, Vol. 30, Issue 9
  • DOI: 10.1021/la404745b

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties
journal, January 2011

  • Wang, Xin; Hu, Yuan; Song, Lei
  • Journal of Materials Chemistry, Vol. 21, Issue 12
  • DOI: 10.1039/c0jm03710a

Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites
journal, July 2009

  • Liang, Jiajie; Huang, Yi; Zhang, Long
  • Advanced Functional Materials, Vol. 19, Issue 14
  • DOI: 10.1002/adfm.200801776

Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring
journal, March 2015

  • Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 11
  • DOI: 10.1021/acsami.5b00695

Strong and Electrically Conductive Graphene-Based Composite Fibers and Laminates
journal, May 2015

  • Vlassiouk, Ivan; Polizos, Georgios; Cooper, Ryan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 20
  • DOI: 10.1021/acsami.5b01367

The mechanics of graphene nanocomposites: A review
journal, July 2012


Flexible and Robust 2D Arrays of Silver Nanowires Encapsulated within Freestanding Layer-by-Layer Films
journal, October 2006

  • Gunawidjaja, R.; Jiang, C.; Peleshanko, S.
  • Advanced Functional Materials, Vol. 16, Issue 15
  • DOI: 10.1002/adfm.200600430

Intact Pattern Transfer of Conductive Exfoliated Graphite Nanoplatelet Composite Films to Polyelectrolyte Multilayer Platforms
journal, May 2008

  • Hendricks, Troy R.; Lu, Jue; Drzal, Lawrence T.
  • Advanced Materials, Vol. 20, Issue 10
  • DOI: 10.1002/adma.200702672

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films
journal, January 2010

  • Wang, Xiluan; Bai, Hua; Yao, Zhiyi
  • Journal of Materials Chemistry, Vol. 20, Issue 41
  • DOI: 10.1039/c0jm01852j

Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and x-ray reflectivity study
journal, December 1993

  • Schmitt, Johannes; Gruenewald, Torsten; Decher, Gero
  • Macromolecules, Vol. 26, Issue 25
  • DOI: 10.1021/ma00077a052

Interaction between Poly(N-vinyl-2-pyrrolidone) and Anionic Hydrocarbon/Fluorocarbon Surfactant on Hydrophobic Graphite
journal, March 1995

  • Otsuka, Hidenori; Esumi, Kunio
  • Journal of Colloid and Interface Science, Vol. 170, Issue 1
  • DOI: 10.1006/jcis.1995.1078