skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data

Abstract

Non-linear bias measurements require a great level of control of potential systematic effects in galaxy redshift surveys. Our goal is to demonstrate the viability of using counts-in-cells (CiC), a statistical measure of the galaxy distribution, as a competitive method to determine linear and higher-order galaxy bias and assess clustering systematics. We measure the galaxy bias by comparing the first four moments of the galaxy density distribution with those of the dark matter distribution. We use data from the MICE simulation to evaluate the performance of this method, and subsequently perform measurements on the public Science Verification data from the Dark Energy Survey. We find that the linear bias obtained with CiC is consistent with measurements of the bias performed using galaxy–galaxy clustering, galaxy–galaxy lensing, cosmic microwave background lensing, and shear + clustering measurements. Furthermore, we compute the projected (2D) non-linear bias using the expansion δ g=Σ$$3\atop{k=0}$$(b k/k!)δ k, finding a non-zero value for b 2 at the 3σ level. We also check a non-local bias model and show that the linear bias measurements are robust to the addition of new parameters. We compare our 2D results to the 3D prediction and find compatibility in the large-scale regime (>30 h -1Mpc).

Authors:
 [1]; ORCiD logo [2];  [3];  [1];  [4]; ORCiD logo [5];  [6];  [7];  [8];  [4];  [9];  [10];  [10];  [11];  [12];  [13];  [14];  [15];  [16];  [17] more »;  [7];  [18];  [4];  [10];  [13];  [19];  [7];  [14];  [16];  [15];  [10];  [20];  [21];  [22];  [23];  [10];  [13];  [24];  [25];  [26];  [16];  [27];  [28];  [14];  [10];  [29];  [30];  [31];  [32];  [33];  [34];  [35];  [11];  [36];  [9] « less
  1. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  2. Department of Physics and Astronomy, University of California, Irvine 92602, USA; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain
  3. Department of Physics and Astronomy, University of California, Riverside 92521, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  4. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain
  5. DEDIP/DAP, IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur- Yvette, France; Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette, France
  6. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA; Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  7. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  8. Center for Cosmology and AstroParticle Physics, Department of Physics, the Ohio State University, 191 W Woodruff Ave,Columbus, OH 43210, USA
  9. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  10. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  11. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  12. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  13. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  14. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  15. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  16. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  17. Institut de Física d’Altes Energies (IFAE), the Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  18. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  19. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  20. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  21. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  22. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  23. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  24. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  25. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  26. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  27. Institut de Física d’Altes Energies (IFAE), the Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  28. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  29. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  30. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  31. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  32. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  33. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  34. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  35. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  36. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1480549
Alternate Identifier(s):
OSTI ID: 1481647
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 482; Journal Issue: 2; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Salvador, A. I., Sánchez, F. J., Pagul, A., García-Bellido, J., Sanchez, E., Pujol, A., Frieman, J., Gaztanaga, E., Ross, A. J., Sevilla-Noarbe, I., Abbott, T. M. C., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Fosalba, P., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Romer, A. K., Roodman, A., Scarpine, V., Schindler, R., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., and Walker, A. R. Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data. United States: N. p., 2018. Web. doi:10.1093/mnras/sty2802.
Salvador, A. I., Sánchez, F. J., Pagul, A., García-Bellido, J., Sanchez, E., Pujol, A., Frieman, J., Gaztanaga, E., Ross, A. J., Sevilla-Noarbe, I., Abbott, T. M. C., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Fosalba, P., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Romer, A. K., Roodman, A., Scarpine, V., Schindler, R., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., & Walker, A. R. Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data. United States. doi:10.1093/mnras/sty2802.
Salvador, A. I., Sánchez, F. J., Pagul, A., García-Bellido, J., Sanchez, E., Pujol, A., Frieman, J., Gaztanaga, E., Ross, A. J., Sevilla-Noarbe, I., Abbott, T. M. C., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Fosalba, P., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Romer, A. K., Roodman, A., Scarpine, V., Schindler, R., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., and Walker, A. R. Wed . "Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data". United States. doi:10.1093/mnras/sty2802.
@article{osti_1480549,
title = {Measuring linear and non-linear galaxy bias using counts-in-cells in the Dark Energy Survey Science Verification data},
author = {Salvador, A. I. and Sánchez, F. J. and Pagul, A. and García-Bellido, J. and Sanchez, E. and Pujol, A. and Frieman, J. and Gaztanaga, E. and Ross, A. J. and Sevilla-Noarbe, I. and Abbott, T. M. C. and Allam, S. and Annis, J. and Avila, S. and Bertin, E. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Cunha, C. E. and De Vicente, J. and Diehl, H. T. and Doel, P. and Evrard, A. E. and Fosalba, P. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. L. and James, D. J. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lima, M. and March, M. and Marshall, J. L. and Menanteau, F. and Miquel, R. and Romer, A. K. and Roodman, A. and Scarpine, V. and Schindler, R. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Vikram, V. and Walker, A. R.},
abstractNote = {Non-linear bias measurements require a great level of control of potential systematic effects in galaxy redshift surveys. Our goal is to demonstrate the viability of using counts-in-cells (CiC), a statistical measure of the galaxy distribution, as a competitive method to determine linear and higher-order galaxy bias and assess clustering systematics. We measure the galaxy bias by comparing the first four moments of the galaxy density distribution with those of the dark matter distribution. We use data from the MICE simulation to evaluate the performance of this method, and subsequently perform measurements on the public Science Verification data from the Dark Energy Survey. We find that the linear bias obtained with CiC is consistent with measurements of the bias performed using galaxy–galaxy clustering, galaxy–galaxy lensing, cosmic microwave background lensing, and shear + clustering measurements. Furthermore, we compute the projected (2D) non-linear bias using the expansion δg=Σ$3\atop{k=0}$(bk/k!)δk, finding a non-zero value for b2 at the 3σ level. We also check a non-local bias model and show that the linear bias measurements are robust to the addition of new parameters. We compare our 2D results to the 3D prediction and find compatibility in the large-scale regime (>30 h-1Mpc).},
doi = {10.1093/mnras/sty2802},
journal = {Monthly Notices of the Royal Astronomical Society},
issn = {0035-8711},
number = 2,
volume = 482,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1093/mnras/sty2802

Save / Share: