Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fracture/matrix flow experiments results

Technical Report ·
DOI:https://doi.org/10.2172/14798· OSTI ID:14798

The impact of vapor diffusion and its potential enhancement are of concern with respect to the performance of the potential nuclear waste repository at Yucca Mountain. Under non-isothermal conditions, such as those prevailing in the near-field environment, gas-phase diffusion of water vapor (a condensable component) may be enhanced as compared to isothermal conditions. Two main phenomena are responsible for this enhancement (Philip and DeVries 1957, p. 226). Normally, diffusive transport of water vapor is obstructed by the presence of liquid islands in the pore throats, and diffusion is reduced at higher saturations. However, under a thermal gradient, a vapor-pressure gradient develops in the gas phase, causing water to evaporate from one side of the liquid island and to diffuse in the gas phase to a liquid island of lower temperature, where it condenses (Figure 1). Water flows through the liquid island as a result of differences in meniscus curvature between the two sides. This difference is caused by the temperature gradient between the liquid-vapor interfaces on the two ends of the liquid island. The evaporation-condensation process repeats itself on the other side of the liquid island; the result is an enhanced diffusive flux through the medium.

Research Organization:
Lawrence Livermore National Lab., CA (US)
Sponsoring Organization:
USDOE Office of Civilian Radioactive Waste Management (RW) (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
14798
Report Number(s):
UCRL-ID-131775
Country of Publication:
United States
Language:
English