Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

Journal Article · · Physical Review, B: Condensed Matter
; ; ; ;  [1]
  1. Departement de Physique and Centre de Recherche en Physique du Solide, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)
A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping {ital t}{sup {prime}}={minus}0.35{ital t} as a model for high-temperature superconductors. Magnetic properties are analyzed using the two-particle self-consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite {ital t}{sup {prime}} and at {ital t}{sup {prime}}=0 but for two totally different physical reasons. When {ital t}{sup {prime}}=0, it is induced by antiferromagnetic correlations while at {ital t}{sup {prime}}={minus}0.35{ital t} it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with {ital T}-matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the {ital d}-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.
OSTI ID:
147787
Journal Information:
Physical Review, B: Condensed Matter, Journal Name: Physical Review, B: Condensed Matter Journal Issue: 22 Vol. 52; ISSN 0163-1829; ISSN PRBMDO
Country of Publication:
United States
Language:
English

Similar Records

Hole motion in the t - J and Hubbard models: Effect of a next-nearest-neighbor hopping
Journal Article · Mon Oct 01 00:00:00 EDT 1990 · Physical Review, B: Condensed Matter; (USA) · OSTI ID:6096759

Quantum Monte Carlo evidence for {ital d}-wave pairing in the two-dimensional Hubbard model at a van Hove singularity
Journal Article · Sat Nov 30 23:00:00 EST 1996 · Physical Review, B: Condensed Matter · OSTI ID:399832

Reply to Comment on Low-temperature properties of the Hubbard chain with an attractive interaction' ''
Journal Article · Wed May 01 00:00:00 EDT 1991 · Physical Review, B: Condensed Matter; (USA) · OSTI ID:5756218