skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport

Abstract

Numerous technologies, such as batteries and fuel cells, depend on electrochemical kinetics. In some cases, the responsible electrochemistry and charged-species transport is complex. However, to date, there are essentially no general-purpose modeling capabilities that facilitate the incorporation of thermodynamic, kinetic, and transport complexities into the simulation of electrochemical processes. A vast majority of the modeling literature uses only a few (often only one) global charge-transfer reactions, with the rates expressed using Butler-Volmer approximations. The objective of the present paper is to identify common aspects of electrochemistry, seeking a foundational basis for designing and implementing software with general applicability across a wide range of materials sets and applications. The development of new technologies should be accelerated and improved by enabling the incorporation of electrochemical complexity (e.g., multi-step, elementary charge-transfer reactions and as well as supporting ionic and electronic transport) into the analysis and interpretation of scientific results. The spirit of the approach is analogous to the role that Chemkin has played in homogeneous chemistry modeling, especially combustion. The Cantera software, which already has some electrochemistry capabilities, forms the foundation for future capabilities expansion.

Authors:
ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); U.S. Air Force Office of Scientific Research; US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1475263
Report Number(s):
NREL/JA-5400-71849
Journal ID: ISSN 0013-4651
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 165; Journal Issue: 13; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 33 ADVANCED PROPULSION SYSTEMS; Marcus theory; Butler-Volmer kinetics; Cantera; ion and electron transport; Faradaic and ohmic heating; general-purpose software

Citation Formats

DeCaluwe, Steven C., Weddle, Peter J., Zhu, Huayang, Colclasure, Andrew M., G. Bessler, Wolfgang, Jackson, Gregory S., and Kee, Robert J. On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport. United States: N. p., 2018. Web. doi:10.1149/2.0241813jes.
DeCaluwe, Steven C., Weddle, Peter J., Zhu, Huayang, Colclasure, Andrew M., G. Bessler, Wolfgang, Jackson, Gregory S., & Kee, Robert J. On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport. United States. doi:10.1149/2.0241813jes.
DeCaluwe, Steven C., Weddle, Peter J., Zhu, Huayang, Colclasure, Andrew M., G. Bessler, Wolfgang, Jackson, Gregory S., and Kee, Robert J. Mon . "On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport". United States. doi:10.1149/2.0241813jes.
@article{osti_1475263,
title = {On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport},
author = {DeCaluwe, Steven C. and Weddle, Peter J. and Zhu, Huayang and Colclasure, Andrew M. and G. Bessler, Wolfgang and Jackson, Gregory S. and Kee, Robert J.},
abstractNote = {Numerous technologies, such as batteries and fuel cells, depend on electrochemical kinetics. In some cases, the responsible electrochemistry and charged-species transport is complex. However, to date, there are essentially no general-purpose modeling capabilities that facilitate the incorporation of thermodynamic, kinetic, and transport complexities into the simulation of electrochemical processes. A vast majority of the modeling literature uses only a few (often only one) global charge-transfer reactions, with the rates expressed using Butler-Volmer approximations. The objective of the present paper is to identify common aspects of electrochemistry, seeking a foundational basis for designing and implementing software with general applicability across a wide range of materials sets and applications. The development of new technologies should be accelerated and improved by enabling the incorporation of electrochemical complexity (e.g., multi-step, elementary charge-transfer reactions and as well as supporting ionic and electronic transport) into the analysis and interpretation of scientific results. The spirit of the approach is analogous to the role that Chemkin has played in homogeneous chemistry modeling, especially combustion. The Cantera software, which already has some electrochemistry capabilities, forms the foundation for future capabilities expansion.},
doi = {10.1149/2.0241813jes},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 13,
volume = 165,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries
journal, December 2011


Theories and Problems of Liquid Diffusion
journal, November 1945


Experimental determination of the Onsager coefficients of transport for Ce0.8Pr0.2O2−δ
journal, January 2010

  • Chatzichristodoulou, Christodoulos; Park, Woo-Seok; Kim, Hong-Seok
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 33
  • DOI: 10.1039/c000865f

Diffuse-charge dynamics in electrochemical systems
journal, August 2004


Defect-Transport-Induced Stress in Mixed Ionic-Electronic Conducting (MIEC) Ceramic Membranes
journal, January 2016

  • Euser, Bryan; Berger, J. R.; Zhu, Huayang
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.1021603jes

Impact of Li 2 O 2 Particle Size on Li–O 2 Battery Charge Process: Insights from a Multiscale Modeling Perspective
journal, September 2016

  • Yin, Yinghui; Gaya, Caroline; Torayev, Amangeldi
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01823

Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers
journal, January 2016


Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA
journal, May 2005

  • Dufrêche, J. -F.; Bernard, O.; Durand-Vidal, S.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 20
  • DOI: 10.1021/jp050387y

Equilibrium and transient conductivity for gadolinium-doped ceria under large perturbations: I. Experiments
journal, November 2014


Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II. Modeling
journal, December 2014


Readily processed protonic ceramic fuel cells with high performance at low temperatures
journal, July 2015


Electron-Ion Interference and Onsager Reciprocity in Mixed Ionic-Electronic Transport in TiO 2
journal, December 2006


Resolving a Discrepancy in Diffusion Potentials, with a Case Study for Li-Ion Batteries
journal, January 2016

  • Bizeray, Adrien M.; Howey, David A.; Monroe, Charles W.
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0451608jes

Process intensification in the catalytic conversion of natural gas to fuels and chemicals
journal, January 2017

  • Kee, Robert J.; Karakaya, Canan; Zhu, Huayang
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.06.014

In Situ and Quantitative Characterization of Solid Electrolyte Interphases
journal, February 2014

  • Cresce, Arthur v.; Russell, Selena M.; Baker, David R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404471v

Effective potential theory for diffusion in binary ionic mixtures
journal, January 2017

  • Shaffer, Nathaniel R.; Baalrud, Scott D.; Daligault, Jérôme
  • Physical Review E, Vol. 95, Issue 1
  • DOI: 10.1103/PhysRevE.95.013206

Impact of non-ideal behavior on ignition delay and chemical kinetics in high-pressure shock tube reactors
journal, March 2018


Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries
journal, December 2010


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Modeling Protonic-Ceramic Fuel Cells with Porous Composite Electrodes in a Button-Cell Configuration
journal, January 2017

  • Zhu, Huayang; Kee, Robert J.
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.0591713jes

Mechanistic modeling of polysulfide shuttle and capacity loss in lithium–sulfur batteries
journal, August 2014


A Critical Review of the Li Insertion Mechanisms in LiFePO 4 Electrodes
journal, January 2013

  • Malik, Rahul; Abdellahi, Aziz; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.029305jes

Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes
journal, January 2009

  • Goodwin, David G.; Zhu, Huayang; Colclasure, Andrew M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3148331

The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells
journal, April 2010


Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry
journal, May 2012

  • Owejan, Jeanette E.; Owejan, Jon P.; DeCaluwe, Steven C.
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm3006887

Multistep Reaction Mechanisms in Nonaqueous Lithium–Oxygen Batteries with Redox Mediator: A Model-Based Study
journal, October 2016

  • Grübl, Daniel; Bergner, Benjamin; Schröder, Daniel
  • The Journal of Physical Chemistry C, Vol. 120, Issue 43
  • DOI: 10.1021/acs.jpcc.6b07886

Interpretation of Defect and Gas-Phase Fluxes through Mixed-Conducting Ceramics Using Nernst–Planck–Poisson and Integral Formulations
journal, October 2013

  • Vøllestad, Einar; Zhu, Huayang; Kee, Robert J.
  • Journal of The Electrochemical Society, Vol. 161, Issue 1
  • DOI: 10.1149/2.067401jes

Computational modeling of sodium-iodine secondary batteries
journal, November 2016


Nonequilibrium Thermodynamics of Porous Electrodes
journal, January 2012

  • Ferguson, Todd R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.048212jes

Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss
journal, November 2017


Defect structure and defect-induced expansion of doped perovskite La 0.7 Sr 0.3 Co 0.9 Fe 0.1 O 3−δ
journal, December 2014


Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices
journal, July 2014


Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Understanding chemical expansion in perovskite-structured oxides
journal, January 2015

  • Marrocchelli, Dario; Perry, Nicola H.; Bishop, Sean R.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 15
  • DOI: 10.1039/C4CP05885B

Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes
journal, November 1932

  • Onsager, Lars; Fuoss, R. M.
  • The Journal of Physical Chemistry, Vol. 36, Issue 11
  • DOI: 10.1021/j150341a001

Relaxation Phenomena in Lithium-Ion-Insertion Cells
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 4
  • DOI: 10.1149/1.2054868

Full-Range Simulation of a Commercial LiFePO 4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis
journal, December 2013

  • Farkhondeh, M.; Safari, M.; Pritzker, M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.094401jes

Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells
journal, May 2018


Mathematical modeling of porous battery electrodes—Revisit of Newman's model
journal, April 2011


Transport Equations for a Mixture of Two Binary Molten Salts in a Porous Electrode
journal, January 1979

  • Pollard, Richard
  • Journal of The Electrochemical Society, Vol. 126, Issue 10
  • DOI: 10.1149/1.2128782

Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries
journal, January 2009

  • Safari, M.; Morcrette, M.; Teyssot, A.
  • Journal of The Electrochemical Society, Vol. 156, Issue 3
  • DOI: 10.1149/1.3043429

Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
journal, January 2011

  • Guo, Meng; Sikha, Godfrey; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3521314

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes
journal, January 2013


Comment on “How to interpret Onsager cross terms in mixed ionic electronic conductors” by I. Riess, Phys. Chem. Chem. Phys., 2014, 16 , 22513
journal, January 2015

  • Yoo, Han-Ill; Martin, Manfred; Janek, Juergen
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 16
  • DOI: 10.1039/C4CP05737F

Theory of Onsager phenomenological coefficients for isothermal linear transport processes in electrolyte solutions
journal, August 1984

  • Thacher, Thomas S.; Lin, Jeong‐long; Mou, C. Y.
  • The Journal of Chemical Physics, Vol. 81, Issue 4
  • DOI: 10.1063/1.447828

Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor
journal, August 2016


Mass Transfer in Concentrated Binary Electrolytes
journal, September 1965

  • Newman, John; Bennion, Douglas; Tobias, Charles W.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 69, Issue 7
  • DOI: 10.1002/bbpc.19650690712

Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies
journal, January 2008

  • Zhu, Huayang; Kee, Robert J.
  • Journal of The Electrochemical Society, Vol. 155, Issue 7
  • DOI: 10.1149/1.2913152

On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
journal, September 1999


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Mesoscopic Modeling of a LiFePO 4 Electrode: Experimental Validation under Continuous and Intermittent Operating Conditions
journal, January 2017

  • Farkhondeh, M.; Pritzker, M.; Fowler, M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0211706jes

Interaction between diffusion and chemical stresses
journal, November 2005


The thermodynamic origin of hysteresis in insertion batteries
journal, April 2010

  • Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2730

Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes
journal, January 2014

  • Orvananos, Bernardo; Ferguson, Todd R.; Yu, Hui-Chia
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.024404jes

Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
journal, January 2005

  • Zhu, Huayang; Kee, Robert J.; Janardhanan, Vinod M.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12
  • DOI: 10.1149/1.2116607

Concentration-Dependent Chemical Expansion in Lithium-Ion Battery Cathode Particles
journal, June 2014

  • Malavé, Veruska; Berger, J. R.; Martin, P. A.
  • Journal of Applied Mechanics, Vol. 81, Issue 9
  • DOI: 10.1115/1.4027833

A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase
journal, January 2004

  • Christensen, John; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1804812

Progress in the direct catalytic conversion of methane to fuels and chemicals
journal, July 2016


Physical chemistry of some microstructural phenomena
journal, October 1978

  • Chen-Min Li, James
  • Metallurgical Transactions A, Vol. 9, Issue 10
  • DOI: 10.1007/BF02661808

Chemical Expansivity of Electrochemical Ceramics
journal, September 2001


Assessing Electrolyte Transport Properties with Molecular Dynamics
journal, January 2017

  • Jones, R. E.; Ward, D. K.; Gittleson, F. S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1171706jes

Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
journal, June 2012

  • Bazant, Martin Z.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300145c

Asymmetry of Discharge/Charge Curves of Lithium-Ion Battery Intercalation Electrodes
journal, October 2016

  • Hall, Florian; Wußler, Sabine; Buqa, Hilmi
  • The Journal of Physical Chemistry C, Vol. 120, Issue 41
  • DOI: 10.1021/acs.jpcc.6b07949

A Flexible Framework for Modeling Multiple Solid, Liquid and Gaseous Phases in Batteries and Fuel Cells
journal, January 2012

  • Neidhardt, Jonathan P.; Fronczek, David N.; Jahnke, Thomas
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.023209jes

A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo0.4Fe0.4Zr0.2O3−δ
journal, January 2013

  • Shang, Meng; Tong, Jianhua; O'Hayre, Ryan
  • RSC Advances, Vol. 3, Issue 36, p. 15769-15775
  • DOI: 10.1039/c3ra41828f

Multi-Scale Thermo-Electrochemical Modeling of Performance and Aging of a LiFePO 4 /Graphite Lithium-Ion Cell
journal, December 2016

  • Kupper, Christian; Bessler, Wolfgang G.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0761702jes

Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C
journal, January 2017

  • Duan, Chuancheng; Hook, David; Chen, Yachao
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE01915C

Catalytic Chemistry for Methane Dehydroaromatization (MDA) on a Bifunctional Mo/HZSM-5 Catalyst in a Packed Bed
journal, September 2016

  • Karakaya, Canan; Morejudo, Selene Hernández; Zhu, Huayang
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 37
  • DOI: 10.1021/acs.iecr.6b02701

The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes
journal, January 2007


Precipitation in aqueous lithium–oxygen batteries: a model-based analysis
journal, January 2013

  • Horstmann, Birger; Danner, Timo; Bessler, Wolfgang G.
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee24299d

Discharge Model for the Lithium Iron-Phosphate Electrode
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785012