Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop)
- Univ. of California, Merced, CA (United States). Sierra Nevada Research Inst.
- Utah State Univ., Logan, UT (United States). Dept. of Watershed Sciences and Dept. of Plants, Soils, and Climate
- Univ. of California, Merced, CA (United States). Sierra Nevada Research Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
Here, we coupled Version 4.0 of the Community Land Model that includes crop growth and management (CLM4crop) into the Weather Research and Forecasting (WRF) model Version 3.3 to better represent interactions between climate and agriculture. We evaluated the performance of the coupled model (WRF3.3-CLM4crop) by comparing simulated crop growth and surface climate to multiple observational datasets across the continental United States. The results showed that although the model with dynamic crop growth overestimated leaf area index (LAI) and growing season length, interannual variability in peak LAI was improved relative to a model with prescribed crop LAI and growth period, which has no environmental sensitivity. Adding irrigation largely improved daily minimum temperature but the RMSE is still higher over irrigated land than non-irrigated land. Improvements in climate variables were limited by an overall model dry bias. However, with addition of an irrigation scheme, soil moisture and surface energy flux partitioning were largely improved at irrigated sites. Irrigation effects were sensitive to crop growth: the case with prescribed crop growth underestimated irrigation water use and effects on temperature and overestimated soil evaporation relative to the case with dynamic crop growth in moderately irrigated regions. We conclude that studies examining irrigation effects on weather and climate using coupled climate–land surface models should include dynamic crop growth and realistic irrigation schemes to better capture land surface effects in agricultural regions.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC); USDA National Inst. of Food and Agriculture (NIFA). Agriculture and Food Research Initiative (AFRI)
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1474897
- Journal Information:
- Climate Dynamics, Journal Name: Climate Dynamics Journal Issue: 11-12 Vol. 45; ISSN 0930-7575
- Publisher:
- Springer-Verlag
- Country of Publication:
- United States
- Language:
- English
Similar Records
Simulating county-level crop yields in the Conterminous United States using the Community Land Model: The effects of optimizing irrigation and fertilization
Empirical estimation of weather-driven yield shocks using biophysical characteristics for U.S. rainfed and irrigated maize, soybeans, and winter wheat
Journal Article
·
Fri Nov 11 19:00:00 EST 2016
· Journal of Advances in Modeling Earth Systems
·
OSTI ID:1346294
Empirical estimation of weather-driven yield shocks using biophysical characteristics for U.S. rainfed and irrigated maize, soybeans, and winter wheat
Journal Article
·
Wed Aug 11 20:00:00 EDT 2021
· Environmental Research Letters
·
OSTI ID:1821863