Temperature response of soft ionizable polymer nanoparticles
Journal Article
·
· Journal of Chemical Physics
- Clemson Univ., Clemson, SC (United States)
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
The temperature response of luminescent ionizable polymers confined into far from equilibrium nanoparticles without chemical links was studied using molecular dynamics simulations. These nanoparticles, often referred to as polydots, are emerging as a promising tool for nanomedicine. Incorporating ionizable groups into these polymers enables biofunctionality; however, they also affect the delicate balance of interactions that hold these nanoparticles together. Here polydots formed by a model polymer dialkyl p-phenylene ethynylene with varying number of carboxylate groups along the polymer backbone were probed. We find that increasing temperature affects neutral and charged polydots differently, where neutral polydots exhibit a transition above which their structure becomes dynamic and they unravel. The dependence of the transition temperature on the surface to volume ratio of these polydots is much stronger than what has previously been observed in polymeric thin films. In conclusion, charged polydots become dynamic enabling migration of the ionizable groups toward the particle interface, while retaining the overall particle shape.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1473954
- Report Number(s):
- SAND--2018-9940J; 667772
- Journal Information:
- Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 8 Vol. 149; ISSN 0021-9606
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dynamics of polydots: Soft luminescent polymeric nanoparticles
Luminescent tunable polydots: Charge effects in confined geometry
Journal Article
·
Thu Mar 03 23:00:00 EST 2016
· Macromolecules
·
OSTI ID:1241374
Luminescent tunable polydots: Charge effects in confined geometry
Journal Article
·
Wed Jun 28 00:00:00 EDT 2017
· Journal of Chemical Physics
·
OSTI ID:1372360