skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Variational formulations of guiding-center Vlasov-Maxwell theory

Abstract

In this paper, the variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. Finally, the conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Saint Michael's College, Colchester, VT (United States). Dept. of Physics
  2. Univ. of Surrey, Guildford (United Kingdom). Dept. of Mathematics
Publication Date:
Research Org.:
Saint Michael's College, Colchester, VT (United States); Univ. of Surrey, Guildford (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); Leverhulme Trust (United Kingdom); London Mathematical Society (United Kingdom)
OSTI Identifier:
1471530
Alternate Identifier(s):
OSTI ID: 1256527
Grant/Contract Number:  
SC0014032; 2014-112; 31320
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 6; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 97 MATHEMATICS AND COMPUTING; Vlasov equation; Lie algebras; plasma physics; charged currents; Maxwell equations; electromagnetism; calculus of variations; plasma dynamics; Hamiltonian mechanics; Newtonian mechanics

Citation Formats

Brizard, Alain J., and Tronci, Cesare. Variational formulations of guiding-center Vlasov-Maxwell theory. United States: N. p., 2016. Web. doi:10.1063/1.4953431.
Brizard, Alain J., & Tronci, Cesare. Variational formulations of guiding-center Vlasov-Maxwell theory. United States. doi:10.1063/1.4953431.
Brizard, Alain J., and Tronci, Cesare. Thu . "Variational formulations of guiding-center Vlasov-Maxwell theory". United States. doi:10.1063/1.4953431. https://www.osti.gov/servlets/purl/1471530.
@article{osti_1471530,
title = {Variational formulations of guiding-center Vlasov-Maxwell theory},
author = {Brizard, Alain J. and Tronci, Cesare},
abstractNote = {In this paper, the variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. Finally, the conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.},
doi = {10.1063/1.4953431},
journal = {Physics of Plasmas},
issn = {1070-664X},
number = 6,
volume = 23,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria
journal, April 2015


Variational principles of guiding centre motion
journal, February 1983


Hamiltonian theory of guiding-center motion
journal, May 2009


Conservation laws for relativistic guiding-center plasma
journal, October 1985


A Lagrangian kinetic model for collisionless magnetic reconnection
journal, January 2013


The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems
journal, February 2013

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4791664

Hamiltonian description of the ideal fluid
journal, April 1998


Variational principles for reduced plasma physics
journal, May 2009


New Variational Formulation of Maxwell-Vlasov and Guiding Center Theories Local Charge and Energy Conservation Laws
journal, January 1984


Foundations of nonlinear gyrokinetic theory
journal, April 2007


The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories
journal, July 1998

  • Holm, Darryl D.; Marsden, Jerrold E.; Ratiu, Tudor S.
  • Advances in Mathematics, Vol. 137, Issue 1
  • DOI: 10.1006/aima.1998.1721

Action principles for the Vlasov equation
journal, April 1992

  • Ye, Huanchun; Morrison, P. J.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 4
  • DOI: 10.1063/1.860231

Beyond linear gyrocenter polarization in gyrokinetic theory
journal, September 2013


Regularization of Hamilton-Lagrangian Guiding Center Theories
journal, November 1985


On the dynamical reduction of the Vlasov equation
journal, February 2008


New Variational Principle for the Vlasov-Maxwell Equations
journal, June 2000


Noether methods for fluids and plasmas
journal, January 1999


Recursive derivation of drift-kinetic equation
journal, January 1973


Application of the phase space action principle to finite-size particle plasma simulations in the drift-kinetic approximation
journal, November 2014


Hamiltonian and action principle formulations of plasma physics
journal, May 2005


Variational formulation of particle algorithms for kinetic plasma simulations
journal, July 2013


Local conservation laws for the Maxwell-Vlasov and collisionless kinetic guiding-center theories
journal, September 1985


Combined Maxwell and kinetic guiding-center theory with polarization drift: Regularized variational formulation with local charge and energy conservation
journal, June 1986

  • Correa-Restrepo, D.; Pfirsch, D.; Wimmel, H. K.
  • Physica A: Statistical Mechanics and its Applications, Vol. 136, Issue 2-3
  • DOI: 10.1016/0378-4371(86)90261-X

Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
journal, August 2012

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742985

Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories
journal, November 2015

  • Tronko, Natalia; Brizard, Alain J.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935925

The Maxwell–Vlasov equations in Euler–Poincaré form
journal, June 1998

  • Cendra, Hernán; Holm, Darryl D.; Hoyle, Mark J. W.
  • Journal of Mathematical Physics, Vol. 39, Issue 6
  • DOI: 10.1063/1.532244

Neutral Vlasov kinetic theory of magnetized plasmas
journal, February 2015

  • Tronci, Cesare; Camporeale, Enrico
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907665

Self‐consistent theory for ion gyroresonance
journal, March 1992

  • Ye, Huanchun; Kaufman, Allan N.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 7
  • DOI: 10.1063/1.860030